- 相关推荐
高中函数与方程教案
作为一名教学工作者,时常需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?下面是小编精心整理的高中函数与方程教案,仅供参考,大家一起来看看吧。
高中函数与方程教案1
一.课前指导
学习目标
掌握余弦函数的周期和最小正周期,并能求出余弦函数的最小正周期。
掌握余弦函数的奇、偶性的判断,并能求出余弦函数的单调区间。并能求出余弦函数的最大最小值与值域、
学法指导
1.利用换元法转化为求二次函数等常见函数的值域.
2.将sin(-2x)化简为-cos2x,然后利用对数函数单调性及余弦函数的有界性求得最大值.
要点导读
1.从图象上可以看出,;,的最小正周期为;
2.一般结论:函数及函数,(其中为常数,且,)的周期T=;
函数及函数,的周期T=;
3.函数y=cosx是(奇或偶)函数函数y=sinx是(奇或偶)函数
4.正弦函数在每一个闭区间上都是增函数,其值从-1增大到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间上都是增函数,其值从-1增加到1;
在每一个闭区间上都是减函数,其值从1减小到-1.
5.y=sinx的.对称轴为x=k∈Zy=cosx的对称轴为x=k∈Z
二.课堂导学
例1.已知x∈,若方程mcosx-1=cosx+m有解,试求参数m的取值范围.
例2.已知y=2cosx(0≤x≤2π)的图像和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是_________________.
例3.求下列函数值域:
(1)y=2cos2x+2cosx+1;(2)y=.
例4.已知0≤x≤,求函数y=cos2x-2acosx的最大值M(a)与最小值m(a).
点拔:利用换元法转化为求二次函数的最值问题.
例5求下列函数的定义域:
(1)y=lgsin(cosx);(2)=.
三、课后测评
一、选择题(每小题5分)
1.下列说法只不正确的是()
(A)正弦函数、余弦函数的定义域是R,值域是[-1,1];
(B)余弦函数当且仅当x=2kπ(k∈Z)时,取得最大值1;
(C)余弦函数在[2kπ+,2kπ+](k∈Z)上都是减函数;
(D)余弦函数在[2kπ-π,2kπ](k∈Z)上都是减函数
2.函数f(x)=sinx-|sinx|的值域为()
(A){0}(B)[-1,1](C)[0,1](D)[-2,0]
3.若a=sin460,b=cos460,c=cos360,则a、b、c的大小关系是()
(A)cab(B)abc(C)acb(D)bca
4.对于函数y=sin(π-x),下面说法中正确的是()
(A)函数是周期为π的奇函数(B)函数是周期为π的偶函数
(C)函数是周期为2π的奇函数(D)函数是周期为2π的偶函数
5.函数y=2cosx(0≤x≤2π)的图象和直线y=2围成一个封闭的平面图形,则这个封闭图形的面积是()
(A)4(B)8(C)2π(D)4π
*6.为了使函数y=sinωx(ω0)在区间[0,1]是至少出现50次最大值,则的最小值是()(A)98π(B)π(C)π(D)100π
二.填空题(每小题5分)
7.(20xx江苏,1)f(x)=cos(x-)最小正周期为,其中>0,则=.
8.函数y=cos(sinx)的奇偶性是.
9.函数f(x)=lg(2sinx+1)+的定义域是;
10.关于x的方程cos2x+sinx-a=0有实数解,则实数a的最小值是.
三.解答题(每小题10分)
11..已知函数f(x)=,求它的定义域和值域,并判断它的奇偶性.
12.已知函数y=f(x)的定义域是[0,],求函数y=f(sin2x)的定义域.
13.已知函数f(x)=sin(2x+φ)为奇函数,求φ的值.
14.已知y=a-bcos3x的最大值为,最小值为,求实数a与b的值.
15求下列函数的值域:
(1)y=;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos+2cosx.
四、课后反思:通过本节课的学习你有哪些收获?
高中函数与方程教案2
一、教材分析:
本节课是对第二章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生基本知识系统化和网络化,基本方法条理化。本章内容大致分为三个部分:(1)直线的倾斜角和斜率;(2)直线方程;(3)两条直线的位置关系。可采用分单元小结的方式,让学生自己回顾和小结各单元知识。再此基础上,教师可对一些关键处予以强调。比如可重申解析几何的基本思想——坐标法,并用解析几何的基本思想串联全章知识,使全章知识网络更加清晰。指出本章学习要求和要注意的问题,可让学生阅读教科书中“学习要求和要注意的问题”有关内容。教师重申坐标法、函数与方程思想、数形结合思想、化归与转化思想及分类与讨论思想等数学思想方法在本章中的特殊地位。
二、教学目标:
通过总结和归纳直线与方程的知识,对全章知识内容进行一次梳理,突出知识间的内在联系,进一步提高学生综合运用知识解决问题的能力。能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分析讨论的思想和抽象思维能力。
三、教学重点:
直线的倾斜角和斜率.
2.直线的方程和直线的位置关系的应用.
3.激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力.
教学难点:
1、数形结合和分类讨论思想的渗透和理解.
2、处理直线综合问题的策略.
四、教学过程
(一).知识要点:学生阅读教材的小结部分.
(二).典例解析
1.例1.下列命题正确的有⑤:①每条直线都有唯一一个倾斜角与之对应,也有唯一一个斜率与之对应;②倾斜角的范围是:0°≤α180°,且当倾斜角增大时,斜率也增大;③过两点A(1,2),B(m,-5)的直线可以用两点式表示;⑤直线Ax+By+C=0(A,B不同时为零),当A,B,C中有一个为零时,这个方程不能化为截距式.⑥若两直线平行,则它们的'斜率必相等;⑦若两直线垂直,则它们的斜率相乘必等于-1.
2.例2.若直线与直线,则时,a_________;时,a=__________;这时它们之间的距离是________;时,a=________.答案:;;;
3.例3.求满足下列条件的直线方程:(1)经过点P(2,-1)且与直线2x+3y+12=0平行;(2)经过点Q(-1,3)且与直线x+2y-1=0垂直;(3)经过点R(-2,3)且在两坐标轴上截距相等;(4)经过点M(1,2)且与点A(2,3)、B(4,-5)距离相等;
答案:(1)2x+3y-1=0;(2)2x-y+5=0;(3)x+y-1=0或3x+2y=0;(4)4x+y-6=0或3x+2y-7=0
4.例4.已知直线L过点(1,2),且与x,y轴正半轴分别交于点A、B(1)求△AOB面积为4时L的方程。解:设A(a,0),B(0,b)∴a,b0∴L的方程为∵点(1,2)在直线上
∴∴①∵b0∴a1
(1)S△AOB===4∴a=2这时b=4∴当a=2,b=4时S△AOB为4
此时直线L的方程为即2x+y-4=0
(2)求L在两轴上截距之和为时L的方程.解:∴这时∴L在两轴上截距之和为3+2时,直线L的方程为y=-x+2+
5.例5.已知△ABC的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C的坐标.
解:∵∴
∴直线AC的方程为
即x+2y+6=0(1)又∵∴BC所在直线与x轴垂直故直线BC的方程为x=6(2)解(1)(2)得点C的坐标为C(6,-6)
(三).课堂小结:本节课总结了第三章的基本知识并形成知识网络,归纳了常见的解题方法,渗透了几种重要的数学思想方法.
(四).作业.:教材复习参考题
五、教后反思:
【高中函数与方程教案】相关文章:
《方程的根与函数的零点》说课稿12-23
函数概念教案07-25
二元一次方程与一次函数教案10-26
方程的意义教案03-30
指数函数教案09-26
分式方程教案09-22
小学数学方程教案02-14
函数的奇偶性教案07-31
一元二次方程高中教案11-15
三角函数教案10-18