分数乘法教案集合六篇
作为一名专为他人授业解惑的人民教师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。怎样写教案才更能起到其作用呢?下面是小编为大家收集的分数乘法教案6篇,希望对大家有所帮助。
分数乘法教案 篇1
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图)
师:仔细观察,从图中能得到哪些数学信息?这里的“
个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果
3.比较分析
师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:
生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为
提出质疑:3个
相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个
相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。
【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。
(二)分数乘整数的计算方法
1.不同方法呈现和比较
师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,
的计算过程用式子该如何表示?预设:
生1:按照加法计算
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个
2.归纳算法
师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?
引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么?
小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。
二、巩固练习,强化新知
1.例1“做一做”第1题
师:说出你的思考过程。
2.例1“做一做”第2题
师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。
预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。
(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)
交流:是根据什么列式的?引导说出思考的`过程并板书:“求12 L的一半,就是求12 L的
是多少。”
(3)出示第2小题学生自练。引导说出:“12×
表示求12 L的
是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)
归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的
,吃了多少千克?
师:你能说说这个算式表示的意义吗?“求3千克的
是多少。”
2.比较两种意义
出示:一袋面包重
千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。
引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。
师:那么,它们有什么是相同的呢?(计算方法和结果)
【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。
五、联系实际,灵活运用
1.算式
可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了
,用去了多少吨?
(2)一堆煤有
吨,5堆这样的煤有多少吨?
你能编写出类似的问题并加以解决吗?
3.拓展练习
1只树袋熊一天大约吃
kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
2.谁会用含有字母的式子表示分数乘整数的计算方法?
【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。
分数乘法教案 篇2
教学目的:使学生通过复习和分数乘法的计算、解答分数乘法应用题以及求倒数,培养学生综合运用知识的能力,发展学生的思维。 .
教学过程:
一、基训
A、1、填》、《、=A》B》0
4/5A/B( )A/B
4/5B/A( )B/A
A/54/B( )4/5
2、一个真分数乘以一个假分数,结果大于真分数,对吗?
3、A、B互为倒数,那么1/A、1/B也互为倒数,对吗?
B、 1.分数乘以整数的意义是什么?
2.一个数乘以分数的意义是什么?一个数乘以分数的'计算法则是什么?
3.计算带分数的乘法应注意些什么?
4.分数乘法的简便运算可以应用哪些运算定律?
5.解答分数乘法应用题的关键是什么?
6.倒数的意义是什么?
学生回答这些问题时,只要意思说得正确就可以了。有些问题还可以问一些与之相
关的问题,如运算定律的表达式以及字母可以表示什么数等等。
二、综合练习
1.找1。
甲是乙的35 。乙是甲的35 。
甲比乙的35 多1。乙比甲的35 少1。
甲的35 和乙同样多。
学生独立判断,集体订正。让学生说说是怎样判断的。教师可再补充几题:
2.做口算练习。
3.求下面各数的倒数。
2/7 1/9 6 20 0.6
学生独立解答,教师巡视,发现问题及时纠正。
4.小红体重42千克,小云体重40千克,小明的体重是小红和小云体重和的1/2,三人共重多少?
5.已知a4/3=11/12b=3/3c,a、b、c都不是0,谁大?
三、小结(略)
四、补充作业。
分数乘法教案 篇3
练习内容:练习二中的第5~10题
练习目标:使学生熟练掌握分数乘法的计算方法,并能正确地进行计算。
练习过程:
一、基础练习
1、口算
××××
14×15×××5
2、计算
××427×
过程要求:
(1)请三位学生上台板演,其余学生做在练习本上。
(2)集体反馈,学生计算过程。
(3)着重强调约分的操作步骤。
二、专项练习:
完成练习二第5~10题
1、第5题
(1)提问各算式的意义。
要求学生根据示意图,分别说一说×、×、×各表示什么?结果是多少?
(2)将结果写在书上。
2、第6题
(1)认真审题,弄清题意。
(2)分别说明三个问题各属于什么类型的'问题。
(3)列式计算。
3、第7题
学生独立完成后,说一说你是怎样做的?
4、第8题
学生列式计算,教师巡视,然后集体订正。
5、第9题
(1)学生判断正误,并说明原因。
(2)改正算式。
6、第10题
(1)学生列式计算,教师巡视进行个别指导。
(2)说一说你有什么体会。
三、课后作业设计:
一、计算。
×××14×
×120××24×18
二、列式计算
1、米的是多少米?
2、千克的是多少千克?
3、吨的是多少吨?
三、解答下列问题。
1、一辆汽车每小时行驶60千米,小时行驶多少千米?
2、一个长方体长米,宽米,高米,它的体积是多少立方米?
课后反思:
分数乘法教案 篇4
1、分数乘法
(1)分数乘整数
教学目标:
1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程:
一、复习
1.出示复习题。
(1)列式并说出算式中的被乘数、乘数各表示什么?
5个12是多少? 9个11是多少? 8个6是多少?
(2)计算:
1/6+2/6 +3/6 = 3/10+3/10 +3/10 =
2.引出课题。
++这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、新授
1、 利用3/10 +3/10 +3/10 教学分数乘法。
(1) 这道加法算式中,加数各是多少?(都是)
(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 3)
(3)3/10 +3/10 +3/10 =9/10,那么 3/10+ 3/10+3/10 =3/10 3,所以 3/103=9/10
2、 出示例1,画出线段图,学生独立列式解答。
(1) 引导学生看图,理解人跑一步的距离相当于袋鼠跳一下的 ,就是把袋鼠跳一下的距离即这一整条线段看作单位1。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。
(2)引导学生根据线段图理解,人跑一步是袋鼠跳一下的,那么人跑3步的距离相当于袋鼠跳一下的几分之几?就是求3个 是多少?(列式: 3 = )
3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。
4、 练习:练习完成做一做第2题。
5、 教学例2
(1)出示 6,学生独立计算。
(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?
(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。
(4)对比,让学生体会先约分再计算的'方法比较简便,同时向学生说明先约分的书写格式。
三、练习
1、 完成做一做的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)
2、 做一做第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)
四、作业
练习二第1、2、4题。
(2)一个数乘分数
教学目标:
1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。
2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。
3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。
教学重点:理解一个数乘分数的意义,掌握分数乘分数的计算方法。
教学难点:推导算理,总结法则。
教学过程:
一、导入
1、计算下列各题并说出计算方法。
2、上面各题都是分数乘以整数,说一说分数乘以整数的意义。
3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。
二、新课
1、教学例3
(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式工作效率工作时间=工作总量,学生列式:
(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即 的 ,由此得出这个乘法算式表示 的 是多少?
(3)根据直观的操作结果,得出=,根据刚才操作的过程和结果推导出计算方法:= = 。
(4)提出问题:小时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。
2、相关练习:练习二第5题。
3、小结一个数乘分数的意义和计算方法。
(1)意义:一个数乘分数,表示求这个数的几分之几是多少。
(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。
4、教学例4
(1)引导学生分析题意,根据速度时间=路程的数量关系列出算式。
(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式。
(3)学生独立解答5分钟飞行多少千米?,讲评中介绍分数乘整数的另一种格式。
5、巩固练习:P11做一做(注意提醒学生要先观察能否约分,再着手计算)。
三、练习
1、练习三第6题
(1)求2枝长多少分米,就是求2个 是多少?算式: 2
(2)求 枝或 枝长多少分米,就是求 的 是多少,或的是多少。
2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)
四、作业
练习二第3、7、8、10题。
(3)分数混合运算和简便运算
教学目标:
1、通过创设自主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。
教学重点:
理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。
教学过程:
一、复习
1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)
2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)
3、观察下面各题,先说说运算顺序,再进行计算。
(1)362+15 (2)56+73 (3)15(34-27)
二、新授
1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。
(1) +(2)- (3)-(4)+
2、复习整数乘法的运算定律
(1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
(2)这些运算定律有什么用处?你能举例说明吗?
(3)用简便方法计算:2574 0.36101
3、推导运算定律是否适用于分数。
(1)鼓励学生大胆猜测并勇于发表自己的个人意见。
(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)
(3)各四人小组汇报讨论和计算结果。
4、教学例6
(1)出示: ,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)
(2)出示: +,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为 4和 4都能先约分,这样能使数据变小,方便计算)
(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简便。
三、练习
P14做一做:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。
(4)练习课
教学目标:
1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。
2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。
教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。
教学难点:熟练掌握运算定律,准确、合理地进行简便计算。
教学过程:
一 、复习
1、复习分数混合运算的运算顺序。
2、复习乘法的简便运算定律
乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
二、巩固练习
1、练习三第1题:应用运算定律进行简便计算(引导学生仔细观察算式特点,正确运用定律进行计算)。
2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如:-= (1- ); (5- )既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。
3、练习三第2题:一朵花要用 张纸,一个同学做了9朵,列式 9,另一个同学做了11朵,列式 11,他们一共做了 9+ 11(朵),学生还可能这样列式: (9+11),引导学生发现,这种列式实际上就是乘法分配律的两种形式。
4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。
5、练习三第6题:要求学生观察题目,能用简便算法的要用简便算法。
6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。
三、布置作业
完成相关的练习册。
(5)分数乘法整理与复习
教学目的:
1.分数乘法的计算方法
2.分数乘加、乘减混合运算
3.熟练掌握运算定律,并运用运算定律进行简便计算。
教学重点:
1.分数乘法的计算方法
教学难点:
运算定律进行简便计算
教学过程:
一、复习分数乘法的计算方法
30 ===
60 ===
12 ==
二、复习分数乘加、乘减混合运算。
+ 1- (1- )
7+ 120(+)
三、复习分数的运算定律并进行简便计算。
+12- - 48+48 24( - )
四、相关文字题复习
1、4的与的4倍的和是多少? 2、 的 比它的 多多少?
五、相关的解决问题。
1、一块长方形纸夹板长米,宽是长的,这块纸夹板的周长和面积分别是多少?
2、某菜场运来茄子800千克,第一天卖完了全部的,第一天卖了多少千克,还剩下多少茄子没有卖?
3、 一个平行四边形,底是米,高是底的 ,这个平行四边形的面积是多少?
六、拓展练习。
分数乘法教案 篇5
教学内容:
教材第2页例1练习一1~3。
教学目标:
1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。
2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。
3、在探索与交流活动中培养观察、推理的能力。
教学重点:
理解他数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:
理解分数乘整数的计算方法。
教学过程:
一、复习旧知,引出课题。
1、复习题。
(1)列式并根据题意说出算式中的两个乘数各表示什么。
5个12是多少? 9个11是多少? 8个6是多少?
提问:通过解决这三道整数乘法计算题,你有什么想说的吗?
(整数乘法是表示几个相同加数的和的简便运算)
(2)计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
2、引出课题。
这题我们还可以怎么计算?今天我们就来学习分数乘法。
二、创设情境,探究分数乘整数。
1、教学分数乘整数的意义。
出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
(1)分析演示
题中的:小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )
确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。
借助示意图理解题意
根据题意列出加法算式 + +
(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。
教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
(3)比较 和125两种算式异同
提示:从两算式表示的意义和两算式的.特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,125是整数乘整数。
(4)概括总结
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
2、教学分数乘以整数的计算法则。
(1)推导算理:由分数乘整数的意义导入。
问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。
(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
3、反馈练习:看图写算式:做一做、练习一第1题。
三、全课小结。
分数乘法教案 篇6
教学内容:
教科书15页,例2及做一做 ,练习四8─10题。
教学目的:
(1)、会画线段图分析分数乘法两步应用题的数量关系。
(2)、掌握分数两步连乘应用题解答方法,并能正确解答。
(3)、进一步培养学生初步的逻辑思维能力。
教学重点:分析分数乘法两步应用题的数量关系。
教学难点:抓住知识关键,正确、灵活判断单位1。
教学过程:
(一)、复习引入:
1、先说说各式的意义,再口算出得数。
╳ ╳
2、指出下面含有分数的句子中,把谁看作单位1。
(1)乙数是甲数的 。(甲数)
(2)乙数的 相当于甲数。(乙数)
(3)大鸡只数的 等于小鸡的只数。(大鸡)
(4)大鸡的只数相当于小鸡的 。(小鸡)
(二)、探究新知:
1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
(1)审题:
全体默读,再指名读,说出已知条件和问题。
师生边讨论边画出线段图。
先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?
(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)
然后画一条线段表示谁储蓄的钱数?画多长?根据什么?
(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。
小亮
18元
?元
?元
小华
小新
(2)分析数量关系:
引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?
也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的`钱数?
(3)确定每一步的算法,列出算式。
怎么求小华的钱数?
根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。
板书:18╳ =15(元)
怎么求小华的钱数?
根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。
板书:15╳ =10(元)
把上面的分步算式列成综合算式:
板书:18╳ ╳ =10(元)
(4)检验写答:
答:小新储蓄了10元。
2、做一做。
学生独立画出线段图,教师巡视指导。
3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。
(三)、课堂练习:
独立完成练习四的第8、9、10题。
板书设计:
例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?
小亮
18元
?元
?元
小华
小新
18╳ =15(元)
15╳ =10(元)
18╳ ╳ =10(元)
答:小新储蓄了10元。
【分数乘法教案】相关文章:
分数乘法的教案10-25
分数乘法教案07-22
分数乘法教案05-24
(精华)分数乘法教案10-20
分数乘法教案(15篇)09-23
分数乘法教案15篇09-17
分数乘法的教案15篇08-29
分数乘法教案通用15篇11-16
分数乘法说课稿07-23
《分数乘法》说课稿06-21