分数乘法教案

时间:2024-10-20 17:35:33 教案 我要投稿

(精华)分数乘法教案

  作为一名教师,通常会被要求编写教案,教案是备课向课堂教学转化的关节点。那么写教案需要注意哪些问题呢?下面是小编精心整理的分数乘法教案,欢迎阅读与收藏。

(精华)分数乘法教案

分数乘法教案1

  教学目标:

  1、通过练习巩固稍复杂的分数乘法实际问题的基本方法,明确解题思路。

  2、通过变式题、开放题的训练,锻炼学生的思维,提高分析问题的能力。

  3、在解决问题中,引导学生认真思考,培养合作精神和克服困难的勇气,激发热爱数学的情感。

  教学重点:

  一步计算的分数乘法问题和两步计算的分数乘加、乘减问题,用分数表示的数量关系的理解以及解答的方法。

  教学难点:

  理解分数表示的“分率”和“具体量”的区别。

  教学过程:

  一、创设情境,切入课题

  朗读诗歌。出示《春》的诗句:

  春水春池满,春时春草生。春花绽春蕊,春雨伴春风。春鸟弄春色,春人忙春耕。

  这首诗的最大特点是什么?你能用我们学过的数学语言来描述吗?能编一些分数乘法解决的问题吗?

  例如:“春”的字数占总字数的几分之几?

  《春》这首诗共有30个字,光“春”字就占了全诗的五分之二,其他字有多少个?“春”字只比其他字少几个?

  学生解答后交流解题思路

  小结:通过前面的学习,同学们已经初步掌握了分数解决问题的关键,要找准单位“1”,要理解分数的含义;这节课我们重点来进行有关分数解决问题训练。

  二、基本练习,掌握方法

  题目要求:根据下列关键句,你都能想到什么(训练学生从以下四方面说)

  (1)梨子的数量是桔子的五分之二;

  五分之二表示()与()的数量关系;

  ()表示“1”;()表示五分之二;

  根据数量关系列示()×()=()。

  (2)一袋米,还剩七分之三;(先补充完整“还剩谁的.七分之三”)

  (3)火车速度比汽车快三分之一

  (4)实际烧煤比计划节约八分之三

  小结:我们在遇到含有分率的分数问题是要先确定单位“1”和分析数量关系;这是解决此类问题的关键。

  三、分类练习

  (一)根据列式补充问题

  根据列式的含义,在每个算式的后面补充合适的问题。

  小华看一本168页的故事书,已经看了七分之四,?

  (二)补充条件进行题组的对比练习:

  选择对应的列示填在括号里,并说出为什么。

  某工厂四月份计划用煤135吨,(),实际用煤多少吨?

  四、课堂检测:

  1、小强想买一台5600元的电脑,他现在只有这台电脑单价的五分之三的钱,小强要买这台电脑还差多少钱?

  2、甲、乙两地相距240千米,一辆汽车从甲地到乙地,已经行驶了120千米,再行驶多少千米距离乙地还有全程的六分之一?

  3、一桶油重200千克,第一次用去它的八分之五,第二次用去剩下的五分之二,第二次用去多少千克?

分数乘法教案2

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重点、难点:学生能够熟练的'计算整数乘以分数

  教学方法:师生共同归纳和推理

  教学准备:教学参考书、教科书

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3×=,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  (学生1:3×==;学生2:3×====……)

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习:

  做课本2页涂一涂,算一算,2个的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结:

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法

  3×==3×====

  分数乘以整数的计算方法:整数乘以分数,只把整数乘以分子,分母不变。)

  教学反思:

分数乘法教案3

  教学内容:

  课本练习四的第6~10题。

  教学目的:

  1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

  2.培养分析能力,发展学生思维。

  教学重点:

  正确分析数量关系,找准单位1

  教学难点:

  依题意正确画图

  教学过程:

  一、复习。

  1.先说出下列各算式表示的意义,再口算出得数。

  2.指出下面每组中的两个量,应把谁看作单位1。

  (1)梨的筐数是苹果的。

  (2)梨的筐数的和苹果的筐数相等。

  (3)白羊只数的等于黑羊的只数。

  (4)白羊的只数相当于黑羊的。

  3.教师给上面的'第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

  (1)有40筐苹果,梨的筐数是苹果的。( )

  (2)梨的筐数是和苹果的筐数相等,有40筐。( )

  (3)有40只白羊,白羊的只数的等于黑羊的只数。( )

  (4)白羊的只数相当于黑羊的,有40只黑羊。( )

  二、新授。

  1.出示例3。

  小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

  (1)指名读题,说也已知条件和问题。

  (2)怎样用线段图表示已知条件和问题。

  先画一条线段,表示谁储蓄的钱数?为什么?

  学生回答后,教师画线段图。

  再画一条线段,表示谁储蓄的钱数?画多长?根据什么?

  学生回答:

  根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的。5份同样长的线段。

  然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

  根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

  教师画:

  (2)分析数量关系。

  引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

  (3)确定每一步的算法,列式计算。

  ①求小华储蓄的钱数怎样想?

  引导学生回答:根据小华储蓄的钱数是小亮的

  把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

  ②求小新储蓄的钱数怎样想?

  引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

  把上面的分上步算式列成综合算式,该怎样列?

  (4)检验,写答语。答:小新储蓄了10元。

  2.做一做。

  让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

  3.小结。

  从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

  学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

  三、巩固练习。

  完成练习四的第6、7题。

  四、全课小结。

  这节课我们共同研究了什么?

  解答这类分数乘法两步应用题关键是什么?

  五、布置作业。

  完成练习四的第8~10题。

分数乘法教案4

  教学目标

  1.使学生掌握分析分数应用题的方法,会分析关系句,找准单位1。

  2.使学生弄清题中的数量关系,掌握解题思路,正确列式解答。

  3.培养学生分析、解决问题的能力,以及知识迁移的能力。

  4.培养学生良好的审题习惯。

  教学重点和难点

  1.会分析数量关系,掌握解题思路,正确解答。

  2.找准单位1;根据问题需要的条件,把间接条件转化为直接条件。

  教学过程

  导语:前边我们已经学过了简单的分数应用题,今天继续学习分数应用题。(板书课题:分数乘法应用题)

  (一)复习铺垫

  1.说图意填空。(投影)

  问:谁是单位1?

  2.说图意回答问题。(投影)

  问:①谁和谁比,谁是单位1?

  3.准备题:

  (做在练习本上,画图列式计算,一个学生到黑板板演。)

  教师订正讲评。

  提问:①谁是单位1?

  ③要求用去多少吨就是求什么?

  少。)

  ④根据什么用乘法计算?

  (根据分数乘法的意义,求一个数的几分之几是多少用乘法计算。)

  师:如果把问改成还剩多少吨应该怎样计算呢?这就是今天要研究的稍复杂的分数应用题。(在课题板书前加上稍复杂的。)

  (二)学习新课

  1.学习例4。

  (1)读题找出条件和问题,并问:问题变了,现在?应画在哪?(在线段图中把?号移动。)

  (2)分析数量关系。(同桌互相说。)

  提问:单位1变了吗?单位1是谁?

  请同学们认真观察线段图,再根据刚才复习的有关知识讨论这道题如何解答,试着做一做。

  学生汇报结果,让学生说解题思路,老师一边把图补充完整。

  =2500-1500

  =1000(吨)

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,先求出用去多少吨,就可以求出还剩多少吨。

  师追问:求用去多少吨你是怎么想的?

  答:还剩1000吨。

  生:把原有煤的总数看作单位1,欲求剩下多少吨,就要先求

  (3)引导学生比较:这两种解法在思路上有什么相同点和不同点?

  相同点:两种解法都是经过两步计算。

  不同点:第一种解法是先求出用去了多少吨,再用总吨数减去用去的吨数,得到的就是剩下多少吨。

  第二种解法是先求出剩下的占总吨数的几分之几,再求剩下的是多少吨。

  (4)练习做一做(1):

  昆虫标本有多少件?

  (做完让学生说解题思路、投影订正。)

  2.学习例5。

  六月份捕鱼多少吨?

  (1)读题找出条件、问题。

  (2)师生合作画出线段图,并分析数量关系。(让学生说画图过程)

  问:①谁和谁比,谁是单位1?

  (3)列式解答。

  师:请同学们认真观察线段图,分析数量关系。小组讨论如何解答,并考虑可用几种方法解答。

  学生汇报结果。(老师板书列式)

  答:六月份捕鱼3000吨。

  师追问:你是怎么想的?

  生:要想求六月份捕鱼多少吨,就得先求出六月份比五月份多捕鱼多少吨。

  师再追问:怎样求六月份比五月份多捕的吨数?

  捕的`吨数。

  答:六月份捕鱼3000吨。

  师追问:怎么想的?

  生:把五月份的吨数看作单位1,先求出六月份捕的相当于五月份捕的几分之几,就可以求出六月份捕鱼多少吨。

  师问:这两种解法有什么联系和区别?

  (联系:两种解法都利用了分数乘法的意义求已知数的几分之几。区别:解题思路不同。)

  (4)练习做一做(2)。

  答。

  (三)巩固练习

  1.补充问题并列式解答。(复合投影片)

  ________?

  2.选择正确答案的序号填在( )里。

  包?列式是

  [ ]

  [ ]

  A.乙队修了多少米?

  B.乙队比甲队多修多少米?

  C.甲队比乙队多修多少米?

  D.乙队比甲队少修多少米?

  (3)根据条件和问题列出算式。

  已知一袋大米重40千克。

  (四)课堂总结

  今天我们学习了较复杂的分数应用题,复杂在哪?解题的关键是什么?

  (复杂在问题所需要的条件没有直接给出,解题关键必须先把这个条件求出来。)

  课堂教学设计说明

  (1)在简单分数应用题的基础上进行本节课教学,学生已有了一定基础,因此首先设计三道复习题,为学生学习新知识做好辅垫。尤其从准备题过渡到例4,给学生搭了从旧知识迁移到新知识的桥梁,学生容易接受。同时使学生悟出新知识是在原有知识基础上发展起来的规律。

  (2)老师围绕重点难点精心设计提问,并充分利用线段图引导学生分析题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过两次对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。

  (3)因为学生有了学习简单分数应用题的基础,因此老师大胆放手,让学生同桌或小组讨论、分析、试做,做完后让学生自己说解题思路。学生充分参与了课堂教学过程,成为学习的主人,调动了积极性。同时培养了学生的口头表达、分析和与人合作的能力。

分数乘法教案5

  分数乘法一步应用题

  教学目标:

  1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

  3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

  教学重点:理解题中的单位“1”和问题的关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教学过程:

  一、复习

  1、先说下列各算式表示的意义,再口算出得数。

  12× ×

  2、列式计算。

  (1)20的 是多少? (2)6的 是多少?

  3、学生得出:求一个数的几分之几用乘法。

  二、新授

  1、教学例1

  (1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的 ”,结合线段图理解题意,找到解题思路。

  (2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的 是多少)

  (3)在分析题意的基础上,学生独立列式、计算。

  2500× =1000(平方米)

  2、结合计算结果,让学生说说自己的'想法,培养学生分析数据的能力,进行国情教育。

  3、巩固练习:“做一做”,让学生画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

  三、练习

  1、练习四第2题:让学生先找出分率句中隐藏的单位“1”——全世界的丹顶鹤数20xx只。

  2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。

  四、总结

  解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)

分数乘法教案6

  【教材简析】

  本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。

  例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。

  【教学目标】

  1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。

  2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。

  【教学过程】

  一、谈话引入:

  同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同

  时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)

  评析:这一环节的设计,教师充分运用教材,以现实的、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。

  二、探索新知:

  1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)

  2、反馈。

  学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的.问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。

  3、以图促思。(媒体出示线段图。)

  4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?

  5、学生操作:

  学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?

  6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)

  7、列式解答。指名一生板演,其余学生在书上完成。

  8、集体批改。(对解题正确的学生进行鼓励。)

  9、探讨其它算法。

  设问:想一想,还可以怎样算?

  如果有学生想出行如A(1-N/M)的式子,要给以表扬,但不要求学生都去掌握。

  评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。

  三、巩固深化

  1、完成练一练第1题

  (1)弄清题意。(媒体出示题目,让学生仔细阅读。)

  (2)谈话:要求还剩多少页没有看,可以先算出什么?

  (3)学生独立分析并解答。

  (4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。

  2、完成练一练第2题

  (1)引导学生弄清题意。

  (2)让学生独立解答。

  (3)组内交流评议。

  3、完成练习十六第1、2题

  (1)指名两位学生板演,其余在自备本上完成。

  (2)组织交流。

  (3)集体反馈,重点让学生说一说解题时先算什么?

  评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。

  四、总结回顾。

  1、通过今天的学习,你又有什么收获?

  2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。

  评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。

分数乘法教案7

  教学目的

  1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。

  2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。

  3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。

  4、使学生理解倒数的意义,掌握求倒数的方法。

  单元重点:

  分数乘法的意义和计算法则。

  单元难点:

  1、理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。

  2、分数乘法计算法则的推导。

  授课课时:

  11课时

  第一课时分数乘整数

  教学内容:

  人教版六年级上册《分数乘法》教材第2、3页。

  授课时间:

  1.2

  教学目标:

  1.在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的.研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算

  2.通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

  教学重点:

  使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

  教学难点:

  引导学生总结分数乘整数的计算法则。发现规律,创造规律。

分数乘法教案8

  教材分析

  “分数乘法的意义”是学习和理解本节课内容的重要基础,因此在教学新知识前帮助学生找到知识的生长点很重要。

  本节课的内容为简单的分数乘法一步应用题,掌握这部分知识才能为学习后面部分较复杂的分数乘法问题打下基础。

  学情分析

  本节课的内容是在学生已经掌握了分数乘法的计算方法和分数乘法的意义,具备了一定的分析题意中已知条件和找单位“1”等迁移知识的能力。学生认知的障碍点主要是理解分数问题中的单位“1”和问题的关系。

  教学目标

  1.理解掌握“求一个数的几分之几是多少”的分数问题的结构和解题方法。

  2.渗透对应思想,发展学生分析推理能力和解决实际问题能力。

  3.感受数学知识应用的广泛性。

  教学重点和难点

  1. 理解分数问题中的单位“1”和问题的关系。

  2.理解“求一个数的几分之几是多少”的`问题的解题思路和方法。

  3.抓住知识关键,正确、灵活判断单位“1”。

  教学过程

  一、复习导入。

  1.读信息,找出单位“1”:

  2.列式计算。

  思考:这两道题为什么用乘法计算?

  板书课题

  二、探索新知。

  1.教学例1

  (1)读题,理解题意。知道题中已知条件和所求问题,搞清楚

  数量间的关系。

  (2)画线段图分析思考,分析重点句。

  (3)在分析题意的基础上,学生尝试解答。

  板书: 2500× =1000(㎡)

  (4)结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。

  三、巩固练习。

  1.让学生理解题意,解决问题并说出解决的依据是什么。

  2.(1)解决的问题是什么?怎样解决?

  (2)比较这两道题的异同。

  3.要求学生画线段图分析题意,再独立列式解答。

  四、拓展提高。

  先让学生独立思考,尝试列式解答,再交流想法。

  小结:解决这类问题应从哪里入手分析?解题步骤是什么?

  五、归纳总结。

  今天有什么收获?

  六、布置作业。

  教科书第18页第2、3、9题。

分数乘法教案9

  教学目标

  1.结合具体情境,在操作活动中,探索并理解分数乘整数的意义。

  2.探索并掌握分数乘整数的计算方法,能正确计算。

  3.能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。

  教学重点

  会用分数乘整数的计算法则真确进行计算。

  教学难点

  分析和解决分数乘整数的实际问题。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一,复习整数乘法的意义

  1.什么叫整数乘法?就是求几个相同加数的和的简便运算。

  2.出示题目,学生进行计算

  (1)6+6+6=6×3

  二、新授:

  1、出示题卡

  1个图案占一张彩纸的1/5,3个图案占这张彩纸的几分之几?

  2、引导学生用涂一涂加法计算,乘法计算三种分式来解决问题。

  学生回忆整数乘法,并回答什么叫整数乘法。

  1、学生仔细阅读题卡,理解题意否,列式计算。

  2、学生交流各自计算的方法。

  3、全班进行交流。

  ++==

  3×=++==

  通过复习整数乘法的.意义,过渡到分数乘法的意义,学习易于理解。

  在交流各自的语言地理学的过程中,让学生体会分数乘整数的意义与整数乘法的意义是相同的,即求几个相同加数的和的简便运算。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、涂一涂,算一算

  (1)2个3/7的和是多少?

  (2)3个5/16的和是多少?

  四、练习巩固

  1、5个3/8是多少?

  2、4个2/17是多少?

  3、6个3/25是多少?

  学生打开教科书,选涂一涂,再列式计算。

  学生审题后,涂一涂,再列式计算。

  ×2=

  全班交流

  5/16×3=5×3/16

  =15/16

  学生独立完成在作业本上

  帮助学生进一步体会分数乘整数的定义,同时还可以帮助学生寸步体会“分数乘整数,分子和整数相乘,分母不变”的道理。

分数乘法教案10

  教学内容:

  教材第7-9页“分数乘法”(三)

  教学目标:

  1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的'算理,掌握计算方法,并能熟练地进行计算;

  2.让学生经历猜想、验证等过程,体验数学研究的方法;

  3.培养逻辑推理能力,渗透一定的数学思维方法。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学过程:

  一、创设情境激趣揭题

  1.出示我国古代哲学著作的情景。

  2.出示复习题

  3×2/5 4/5×2

  3.顺势导入新课:分数乘法(三)

  二、扶放结合探究新知

  1.画图引导学生理解1/2*1/2的算例。

  2.出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。

  3.出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:

  分子乘分子,分母乘分母。

  三、反馈矫正落实双基

  1.出示教材第8页试一试1-3题。

  2.引导学生发现规律。

  四、小结评价布置预习

  1.引导学生进行课堂小结。

  2.布置预习:教材10-11页练习一。

  板书设计:

  分数乘法(三)

  意义:求一个数的几分之几是多少?

  计算法则:分子乘分子作分子,分母乘分母作分母。

分数乘法教案11

  教学内容:

  教材第3页例2,做一做。

  教学目标:

  1、通过直观操作理解一个数乘分数的意义

  2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

  3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。

  教学重点:

  理解一个数乘分数的意义。

  教学难点:

  理解一个数乘分数的意义。

  教学过程:

  一、复习导入

  1、计算

  2、一个正方形的边长是 m,它的周长是多少米?

  二、创设情境,探究整数乘分数

  1、借助情境理解整数乘分数的意义。

  1桶水有1/2L。3桶共多少L?12 桶是多少L?14 桶是多少L?

  (1)理解题意,明确题中的数量关系:单位量数量=总量

  (2)根据题意列出算式: 3桶水共多少L?1/23

  12 桶是多少L?1/212 14 桶是多少L?1/214

  (3)探究每道算式的意义

  1/23表示求3个1/2L,也就是求1/2L的3倍是多少。

  1/2是一半,1/212 表示12L的一半,也就是求12L的1/2是多少。

  1/214 表示求1/2L的`14倍是多少。

  发现:一个数乘分数表示的是求这个数的几分之几是多少。

  (4)解决问题。123=36(L)

  121/4=3(L) 答:3桶共36L。 桶是6L。 桶是3L。

  2、完成做一做

  一袋面粉重3㎏。已经吃了它的 ,吃了多少千克?

  学生独立解答后汇报。

  3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的 。一班男生做了多少件?(分析:男生做了总数的 ,是把一班共制作泥塑作品15件看作单位1,把总数15件平均分成5份。男生做的占其中的3份。)

  4、归纳总结

  求一个数的几分之几是多少,用乘法计算。

  5、练习:29 6= 1234 = 310 4=

  观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。

  四、巩固练习,反馈提高

  练习一第2、3题。

  五、全课小结

分数乘法教案12

  课时1:分数乘法应用题

  教学内容:教科书第69页例1,“做一做”及练习十四第1~5题。

  教学目的:使学生初步掌握求一个数的几分之几是多少的乘法应用题的解答方法。

  教学重点:通过线段图理解分析分数一步乘法应用题的数量关,建立求一个数的几分之几是多少,用乘法计算的解题思路。

  教学过程:

一、复习

  1、口算下列各题,并选其中两题说一说算式的意义。

  ×2 ×3 25× ×39 40×

  × × × × ×

  2、根据意义,列出算式。

  4个20个70个

  4的20的70的

  二、新授

  揭示课题并板书:分数乘法应用题

  1、出示准备题。

  20的是多少?6的是多少?

  学生回答后小结。

  2、出示例1。

  学校买来100千克的白菜,吃了,吃了多少千克?

  (1)教师边指导学生读题边画线段图。图略。

  (2)提问:已知条件是什么?所求问题是什么?(在线段图上指出来。)

  吃了谁的`?

  吃了100千克的,就是把100千克平均分成几份?吃了其中的几份?

  (3)根据学生回答列式。板书:解法一:100÷5×4=80(千克)

  (4)教师小结,并引入第二种解法。

  上面这个解法是根据已学过的整数乘除法来解答的。我们还可以根据分数乘法的意义直接用分数乘法来解答。板书:解法二:

  (5)提问。

  吃了,是吃了谁的?

  应该把那个数量看作单位“1”?

  要求吃了100千克的是多少,该怎样计算?根据什么列出乘法算式?

  (6)列式解答:解法二100× =80(千克)

  答:吃了80千克。

  3、教师小结。

  上题“吃了”是指吃了100千克的,把100千克看作单位“1”,要求100的是多少?根据一个数乘以分数的意义来列式解答。以后我们遇到这类乘法应用题时就应该用解法二,即根据分数乘法的意义来列式解答。

  三、复习巩固

  完成第69页“做一做”中的题目。练习题后再让学生试着讲一讲,把哪个数量看作单位“1”,根据什么列式解答。求一个数的几分之几是多少,用什么方法计算。

  四、全课总结

  今天这节课,我们学习了分数乘法应用题。要注意认真读题,弄清题意,看谁把什么数量看作单位“1”,然后根据分数乘法的意义,来解分数乘法应用题。

  五、作业

  练习十四第1~5题。

  课时2:巩固练习

  教学目的和重点:会根据题意作出线段图,正确解题

  教学过程:

  1、复习(作出线段图列式计算)

  (1)320亩的是多少亩?(2)40吨油的是多少吨?

  2、补充相关例题。 (2~3应用题)

  理解题意确定单位1,作出线段图。

  列式计算。

  3、 小结

  4、作业p71~72 / 6~10补充相关题目。

  课时3:求一个数的几分之几是多少的带分数应用题

  教学内容:第70页例2,“做一做”及练习十四第11~16题。

  教学目的:能准确地确定单位“1”,根据分数乘法的意义,理顺思路,列式计算。

  教学重点:通过线段图理解分析分数一步乘法应用题的数量关,建立求一个数的几分之几是多少,用乘法计算的解题思路。

  教学过程:

  1、复习。的是多少?的倍是多少?

  五年级有学生18人,参加数学竞赛的占全年级学生数的1/3,参加数学竞赛的有多少人?

  2、新授例2、小林身高1(3/5)米,小强身高是小林的7/8,小强身高多少米?

  1)让学生读题

  2)利用线段图示帮助理解题意

  想:小强身高是小林的7/8,就要把小林的身高看作单位“1”。要求1(3/5)的7/8是多少,根据分数乘法的意义,也用乘法计算。

  1(3/5)×7/8=7/5=1(2/5)(米)

  答:小强身高1(2/5)米。

  想一想:如果把上题改成下面的题:

  小强身高1(2/5)米,小林身高是小强的1(1/7)倍,小林身高多少米?

  1)让学生读题

  2)利用线段图示帮助理解题意

  想:小林身高是小强的1(1/7)倍,就要把小强的身高看作单位“1”。

  1(2/5)×1(1/7)=7/5×8/7=8/5=1(3/5)(米)

  答:小林身高1(3/5)米。

  3、练习p71做一做并补充相关练习。

  4、 小结

  5、作业p72 / 11~16 (分析15,16)

  课时4:混合练习

  教学目的:牢固确立,求一个数的几分之几是多少用乘法计算的解题思路,比较熟练地借助线段图来分析应用题数量关系。

  教学过程:

  1、分析作业中存在的问题,并予以解决。

  2、补充相关应用题(2~3道)。

  读题讨论作图解题。

  3、分析讲解p73~74/ 18、20、21

  4、 小结

  5、作业p73~74/17~22、

  (17注意:单位“1”是去年种的花生数。

  18注意:单位“1”都是180千克。

  19注意:单位“1”是排球的定价。

  20第一小题的单位“1”是计划耕地。

  第二小题是减法。

  21注意:单位“1”是小汽车的1/10。

  22注意:他们的单位“1”都是小雄的9(1/5)分。)

分数乘法教案13

  教学目标:

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出整数乘以不同分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数乘法运算题。

  3/11×3 9/16×12 21×5/14

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)

  二、讲授新课:

  教师出示课本例题:小红有6个苹果,淘气的苹果是小红的1/2;笑笑的苹果是小红的1/3,淘气和笑笑各有几个苹果?

  教师让学生思考这个例题,并对学生进行提问。

  学生自己动手填完课本例题上的.方格。

  教师提问学生说一说自己是怎样计算的?

  (学生1:6×1/2=6×1/2≤3个;学生2:6×1/3=6×1/3≤2个)

  教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。

  三、巩固练习:

  做课本5页试一试,36的1/4和1/6分别是多少?

  注意让学生体验求一个整数的几分之几是多少的数学意义。

  四、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  6×1/2=6×1/2≤3个;6×1/3=6×1/3≤2个

  整数乘以分数的数学意义:就是求整数的几分之几是多少?

分数乘法教案14

  教学内容:

  教科书15页,例2及做一做 ,练习四8─10题。

  教学目的:

  (1)、会画线段图分析分数乘法两步应用题的数量关系。

  (2)、掌握分数两步连乘应用题解答方法,并能正确解答。

  (3)、进一步培养学生初步的逻辑思维能力。

  教学重点:分析分数乘法两步应用题的数量关系。

  教学难点:抓住知识关键,正确、灵活判断单位1。

  教学过程:

  (一)、复习引入:

  1、先说说各式的意义,再口算出得数。

  ╳ ╳

  2、指出下面含有分数的句子中,把谁看作单位1。

  (1)乙数是甲数的 。(甲数)

  (2)乙数的 相当于甲数。(乙数)

  (3)大鸡只数的 等于小鸡的只数。(大鸡)

  (4)大鸡的只数相当于小鸡的 。(小鸡)

  (二)、探究新知:

  1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  (1)审题:

  全体默读,再指名读,说出已知条件和问题。

  师生边讨论边画出线段图。

  先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (根据:小华的`钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

  然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

  (又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

  小亮

  18元

  ?元

  ?元

  小华

  小新

  (2)分析数量关系:

  引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

  也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

  (3)确定每一步的算法,列出算式。

  怎么求小华的钱数?

  根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

  板书:18╳ =15(元)

  怎么求小华的钱数?

  根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

  板书:15╳ =10(元)

  把上面的分步算式列成综合算式:

  板书:18╳ ╳ =10(元)

  (4)检验写答:

  答:小新储蓄了10元。

  2、做一做。

  学生独立画出线段图,教师巡视指导。

  3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

  (三)、课堂练习:

  独立完成练习四的第8、9、10题。

  板书设计:

  例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

  小亮

  18元

  ?元

  ?元

  小华

  小新

  18╳ =15(元)

  15╳ =10(元)

  18╳ ╳ =10(元)

  答:小新储蓄了10元。

分数乘法教案15

  分数乘法

  1、分数乘法的意义和计算法则:

  课时:1课时。 总课时:1课时。执行时间:

  课题:分数乘整数。

  教学目的:

  1、 使学生理解分数乘整数的意义;

  2、 握分数乘整数的计算法则,并能够正确地进行计算。

  3、 培养学生的学习兴趣。教具:多媒体教学课件。

  教学过程():

  一、 复习引入

  1、 5个12是多少?怎么样列式?

  算式:12+12+12+12+12=60或12×5=60

  小结:求几个相同加数的和,可以用加法算,也可以用乘法算。

  2、 计算:

  2/7+2/7+2/7 3/10+3/10+3/10

  (1) 说一说算法,(2)说一说表示的.意义,(3)这道题是否可以用乘法计算?能写出乘法算式吗?

  二、 尝试、探究

  1、 分数乘整数的意义,

  (1)学生说,教师板书:2/7×3 3/10×3

  (2)学生交流。(3)教师强调意义。

  2、 探究分数乘整数的计算法则,

  (1) 学生试计算3/10×3,汇报交流,

  方法一:因为3/10+3/10+3/10=9/10,所以3/10×3=9/10.方法二:3/10里面有3个1/10,3个3/10里面就有(3×3)个1/10也就是9/10.

  (3)肯定学生想法,

  课件演示【例1】看教本:

  小新、爸爸、妈妈一起吃一块蛋糕,每人吃2/9块,3人一共多少块?

  (1)学生审题, (2)引导学生看思考,

  (2) 学生交流板书:

  用加法算:2/9+2/9+2/9=2+2+2/9=6/9=2/3(块)

  用乘法算:2/9×3=2×3/9=6/9=2/3(块)

  答:3个人一共吃2/3块。

  (4)小结计算法则:

  三、 巩固练习

  1、 做练习一的第1题。

  2、 做一做,

  四、 作业:第3、4题。

  五、 后记:

【分数乘法教案】相关文章:

分数乘法教案02-13

分数乘法的教案11-03

分数乘法教案05-24

分数乘法教案(15篇)02-13

分数乘法教案15篇11-16

分数乘法的教案15篇01-15

分数乘法教案通用15篇02-15

分数乘法说课稿11-23

《分数乘法》说课稿06-21