高一物理知识点总结

时间:2025-09-07 10:19:17 知识点总结 我要投稿

高一物理知识点总结(锦集15篇)

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以使我们更有效率,因此我们需要回头归纳,写一份总结了。那么总结应该包括什么内容呢?下面是小编为大家收集的高一物理知识点总结,仅供参考,希望能够帮助到大家。

高一物理知识点总结(锦集15篇)

高一物理知识点总结1

  运动学的基本概念

  1.参考系:描述一个物体的运动时,选择其他物体作为标准。

  运动是绝对的,静止是相对的。与参考系在相比,一个物体是运动还是静止。

  参考系的选择是任意的,我们假设它是静止的。选择不同的物体作为参考系可能会得出不同的结论,但运动的描述应该尽可能简单。

  地面通常是参考系。

  2、质点:

  ①定义:用来代替物体的质量点。质量是一种科学抽象的理想模型。

  ②物体可以被视为质量点的条件:在研究物体的运动时,可以忽略物体的大小和形状对研究结果的`影响。物体是否可以被视为质量点,应具体分析具体问题。

  ③物体可视为几种质点:

  平动物体通常可视为质点。

  (2)当有旋转但相对平动可以忽略时,物体也可以视为质点。

  (3)同一物体有时可以看到质点,有时不能看到质点.当物体本身的大小对研究问题的影响不容忽视时,物体就不能被视为质点。相反,它可以.

  注意(1)不能以物体的大小和形状为标准来判断物体是否可以被视为质点,关键取决于研究问题的性质.当物体的大小和形状对研究问题的影响可以忽略不计时时,物体可以被视为质点.

  (2)质量不是很小的点,要区别于几何中的点。

  3.时间和时间:

  时间是指时间轴上的一个点,它对应于状态量;时间是指从开始到结束的间隔,用时间轴上的线段表示,它对应于过程量。

  四、位移及距离:

  位移用于描述质点位置的变化,是质点从初始位置到末端位置的向线段,是矢量;

  距离是质点运动轨迹的长度和标量。

  5、速度:

  物理量是矢量,用来描述质点运动的速度和方向。

  (1)平均速度:位移与通过这个位移所用时间的比值,定义为,方向与位移方向相同。平均速度只能粗略描述变速运动。

  (2)瞬时速度:质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,可以精确变速。瞬时速度称为速度,是标量。

  6.加速度:用量描述速度变化的物理量。

  加速度是矢量,其方向与速度相同(注意与速度方向无关),大小由两个因素决定。

  易错现象

  忽略位移、速度、加速度的矢量性,只考虑大小,不注意方向。

  2.混淆速度、速度增量与加速度的关系。

  高一物理必修一知识点总结匀变速直线运动的规律及其应用:

  1.定义:速度变化在任何相等时间内都是相等的直线运动。

  2.匀变速直线运动的基本规律

  (1)T中任何两个连续相等时间的位移差为恒量

  (2)时间中点的瞬时速度等于这段时间的平均速度

  4.初速为零的匀速直线运动的比例(2)初速为零的匀速直线运动的几个重要结论:

  ①1T末,2T末,3T末……瞬时速度比为:

  v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

  ②1T内,2T内,3T内……位移比为:

  x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)

  ③第一个T,第二个T,第三个T……第n个T内位移比为:

  xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

  ④连续相等位移的时间比为:

  易错现象:

  1.不注意一系列公式v、a正、负。

  2.纸带的处理是这部分的重点和难点,也是容易出错的问题。

  3.滥用初速为零的匀加速直线运动的特殊公式。

高一物理知识点总结2

  (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:①摩擦力的产生是由于物体表面不光滑造成的。

  ②摩擦力具有相互性。

  ⅰ滑动摩擦力的产生条件:

  A、两个物体相互接触;

  B、两物体发生形变;

  C、两物体发生了相对滑动;

  D、接触面不光滑。

  ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

  说明:

  ①“与相对运动方向相反”不能等同于“与运动方向相反”

  ②滑动摩擦力可能起动力作用,也可能起阻力作用。

  ⅲ滑动摩擦力的大小:F=μFN

  说明:①FN两物体表面间的压力,性质上属于弹力,不是重力。应具体分析。

  ②μ与接触面的材料、接触面的粗糙程度有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

  ⅴ滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

  (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

  说明:静摩擦力的作用具有相互性。

  ⅰ静摩擦力的产生条件:

  A、两物体相接触;

  B、相接触面不光滑;

  C、两物体有形变;

  D、两物体有相对运动趋势。

  ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

  说明:

  ①运动的物体可以受到静摩擦力的作用。

  ②静摩擦力的方向可以与运动方向相同,可以相反,还可以成任一夹角θ。

  ③静摩擦力可以是阻力也可以是动力。

  ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0

  说明:

  ①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

  ②静摩擦力大小决定于正压力与静摩擦因数(选学)Fm=μsFN。

  ⅳ效果:总是阻碍物体间的相对运动的趋势。

  对物体进行受力分析是解决力学问题的'基础,是研究力学的重要方法,受力分析的程序是:

  1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象可以是单个物体,也可以是几个物体组成的系统。

  2、把研究对象从周围的环境中隔离出来,按照先场力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

  3、对物体受力分析时,应注意一下几点:

  (1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

  (2)对于作用在物体上的每一个力都必须明确它的来源,不能无中生有。

  (3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

  力分解问题的关键是根据力的作用效果画出力的平行四边形,接着就转化为一个根据已知边角关系求解的几何问题

高一物理知识点总结3

  物体与质点

  1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。

  2、物体可以看成质点的条件

  条件:①研究的物体上个点的运动情况完全一致。

  ②物体的线度必须远远的大于它通过的距离。

  物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点

  平动的物体可以视为质点

  平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。

  小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的.质量。

  参考系

  1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。

  2、对参考系的理解:

  物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。

  同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的’。

  比较物体的运动,应该选择同一参考系。

  参考系可以是运动的物体,也可以是静止的物体。

  小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。

  坐标系

  1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。

  2、坐标系分类:

  一维坐标系:适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站的距离来确定。

  二维坐标系适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。

  三维坐标系:适用于物体在三维空间的运动。例如,篮球在空中的运动。

高一物理知识点总结4

  万有引力定律及其应用

  1.万有引力定律:引力常量G=6.67×N?m2/kg2

  2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)

  3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)

  (1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)

  (2)重力=万有引力

  地面物体的重力加速度:mg=Gg=G≈9.8m/s2

  高空物体的重力加速度:mg=Gg=GF2)

  2.互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2

  3.合力大小范围:|F1-F2|≤F≤|F1+F2|

  4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成与分解遵循平行四边形定则;

  (2)合力与分力的关系是等效替代关系,可用合力替代分力的'共同作用,反之也成立;

  (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

  (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

  (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高一物理知识点总结5

  1.物质与运动

  世界是物质的,而物质是运动的。运动是物质的存在方式和根本属性。恩格斯说:“运动,就它被理解为存在方式,被理解为物质的固有属性这一最一般的意义来说,囊括宇宙中发生的一切变化和过程,从单纯的位置变动起直到思维。”运动是标志一切事物和现象的变化及其过程的哲学范畴。

  物质和运动是不可分割的,一方面,运动是物质的存在方式和根本属性,物质是运动着的物质,脱离运动的物质是不存在的,设想不运动的物质,将导致形而上学。另一方面,物质是一切运动变化和发展过程的实在基础和承担者,世界上没有离开物质的运动,任何形式的运动,都有它的物质主体,设想无物质的运动,将导致唯心主义。

  2.运动与静止

  物质世界的运动是绝对的,而物质在运动过程中又有某种暂时的静止,静止是相对的。静止是物质运动在一定条件下的`稳定状态,包括空间位置和根本性质暂时未变这样两种运动的特殊状态。运动的绝对性体现了物质运动的变动性、无条件性。静止的相对性体现了物质运动的稳定性、有条件性。运动和静止相互依赖、相互渗透、相互包含,“动中有静、静中有动”。无条件的绝对运动和有条件的相对静止构成了事物的矛盾运动。只有把握了运动和静止的辩证关系,才能正确理解物质世界及其运动形式的多样性,才能理解认识和改造世界的可能性。

  3.时间和空间

  时间和空间是物质运动的存在形式。物质运动与时间和空间的不可分割证明了时间和空间的客观性。

  时间是指物质运动的持续性、顺序性,特点是一维性。

  空间是指物质运动的广延性、伸张性,特点是三维性。

  物质运动总是在一定的时间和空间中进行的,没有离开物质运动的“纯粹”时间和空间,也没有离开时间和空间的物质运动。具体物质形态的时空是有限的,而整个物质世界的时空是无限的;物质运动时间和空间的客观实在性是绝对的,物质运动时间和空间的具体特性是相对的。一切以时间、地点、条件为转移,具体问题具体分析,是马克思主义的活的灵魂。物质、运动、时间、空间具有内在的统一性。

  4.时间与时刻

  1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

  △t=t2—t1

  2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h。

  3.通常以问题中的初始时刻为零点。

  5.路程和位移

  1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。

  2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

  3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

  4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

高一物理知识点总结6

  高一物理必修二知识点总结复习手册,汇集了高一物理课本必修二学习到的所有知识点,包含高一物理必修二曲线运动和圆周运动知识点总结、高一物理必修二万有引力与航天知识点总结和高一物理必修二机械能守恒定律知识点总结,是考生高一物理复习和高考备考的必备资料。

  一、 曲线运动

  1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。

  2、物体做直线或曲线运动的条件:

  (已知当物体受到合外力F作用下,在F方向上便产生加速度a)

  (1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;

  (2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。

  3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。

  4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。

  两分运动说明:

  (1)在水平方向上由于不受力,将做匀速直线运动;

  (2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。

  5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下,则物体在任意时刻t的位置坐标为: 6、①水平分速度: ②竖直分速度: ③t秒末的合速度: ④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角 表示:

  二、圆周运动

  1、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。

  2、描述匀速圆周运动快慢的物理量

  (1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上

  **匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变。

  (2)角速度 :ω=φ/t(φ指转过的角度,转一圈φ为 ),单位 rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的

  (3)周期T,频率f=1/T

  (4)线速度、角速度及周期之间的关系: 3、向心力: ,或者 , 向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。

  4、向心加速度: ,或 或 描述线速度变化快慢,方向与向心力的方向相同,5,注意的结论:

  (1)由于 方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。

  (2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。

  (3)做匀速圆周运动的物体受到的合外力就是向心力。

  6、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。

  三、万有引力定律及其应用

  1、万有引力定律: ,引力常量G=6.67× N·m2/kg2

  2、适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)

  3、万有引力定律的应用:(中心天体质量M, 天体半径R, 天体表面重力加速度g )

  (1)万有引力=向心力 (一个天体绕另一个天体作圆周运动时,下面式中r=R+h )

  (2)重力=万有引力

  地面物体的重力加速度:mg = G g = G ≈9.8m/s2

  高空物体的重力加速度:mg = G g = G<9.8m/s2

  4、第一宇宙速度----在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的.线速度,在所有圆周运动的卫星中线速度是最大的

  由mg=mv2/R或由 = =7.9km/s

  5、开普勒三大定律

  6、利用万有引力定律计算天体质量

  7、通过万有引力定律和向心力公式计算环绕速度

  8、大于环绕速度的两个特殊发射速度:第二宇宙速度、第三宇宙速度(含义)

  四、功、功率、机械能和能源

  1、做功两要素:力和物体在力的方向上发生位移

  2、功: 其中 为力F的方向同位移L方向所成的角

  功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)

  3、物体做正功负功问题 (将α理解为F与V所成的角,更为简单)

  (1)当α=900时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,如小球在水平桌面上滚动,桌面对球的支持力不做功。

  (2)当α<900时,>0,W>0.这表示力F对物体做正功。

  如人用力推车前进时,人的推力F对车做正功。

  (3)当 时,cosα<0,W<0.这表示力F对物体做负功。

  如人用力阻碍车前进时,人的推力F对车做负功。

  ** 一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

  例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功。

  4、动能是标量,只有大小,没有方向。表达式为: 5、重力势能是标量,表达式为: (1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

  (2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

  6、动能定理:

  其中W为外力对物体所做的总功,m为物体质量,v为末速度, 为初速度

  解答思路:

  ①选取研究对象,明确它的运动过程。

  ②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。

  ③明确物体在过程始末状态的动能 和 。

  ④列出动能定理的方程 。

  7、机械能守恒定律: (只有重力或弹力做功,没有任何外力做功。)

  解题思路:

  ①选取研究对象----物体系或物体。

  ②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

  ③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

  ④根据机械能守恒定律列方程,进行求解。

  8、功率的表达式: ,或者P=FV 功率:描述力对物体做功快慢;是标量,有正负

  9、额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

  实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

  10、能量守恒定律及能量耗散

  ●能量的转化与守恒

  1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

  2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

  3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

  内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

  即E机械能1+E其它1=E机械能2+E机械能2

  能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

  ●能源与社会

  1、可再生能源:可以长期提供或可以再生的能源。

  2、不可再生能源:一旦消耗就很难再生的能源。

  3、能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

  ●开发新能源

  1、太阳能

  2、核能

  3、核能发电

  4、其它新能源:地热能、潮汐能、风能。

  高一物理寒假复习知识点总结高一物理上册期末考试必备知识点总结

高一物理知识点总结7

  第一章力

  定义:力是物体之间的相互作用。

  理解要点:

  (1)力具有物质性:力不能离开物体而存在。

  说明:

  ①对某一物体而言,可能有一个或多个施力物体。

  ②并非先有施力物体,后有受力物体

  (2)力具有相互性:一个力总是关联着两个物体,施力物体同时也是受力物体,受力物体同时也是施力物体。

  说明:

  ①相互作用的物体能够直接接触,也能够不接触。

  ②力的大小用测力计测量。

  (3)力具有矢量性:力不仅仅有大小,也有方向。

  (4)力的作用效果:使物体的形状发生改变;使物体的运动状态发生变化。

  (5)力的种类:

  ①根据力的性质命名:如重力、弹力、摩擦力、分子力、电磁力、核力等。

  ②根据效果命名:如压力、拉力、动力、阻力、向心力、回复力等。

  说明:根据效果命名的,不一样名称的力,性质能够相同;同一名称的力,性质能够不一样。

  重力

  定义:由于受到地球的吸引而使物体受到的力叫重力。

  说明:

  ①地球附近的物体都受到重力作用。

  ②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。

  ③重力的施力物体是地球。

  ④在两极时重力等于物体所受的万有引力,在其它位置时不相等。

  (1)重力的大小:G=mg

  说明:

  ①在地球表面上不一样的地方同一物体的重力大小不一样的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。

  ②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。

  ③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。

  (2)重力的方向:竖直向下(即垂直于水平面)

  说明:

  ①在两极与在赤道上的物体,所受重力的方向指向地心。

  ②重力的方向不受其它作用力的影响,与运动状态也没有关系。

  (3)重心:物体所受重力的作用点。

  重心的确定:

  ①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。

  ②质量分布不均匀的物体的重心与物体的形状、质量分布有关。

  ③薄板形物体的重心,可用悬挂法确定。

  说明:

  ①物体的重心可在物体上,也可在物体外。

  ②重心的位置与物体所处的位置及放置状态和运动状态无关。

  ③引入重心概念后,研究具体物体时,就能够把整个物体各部分的重力用作用于重心的一个力来表示,于是原先的物体就能够用一个有质量的点来代替。

  弹力

  (1)形变:物体的形状或体积的改变,叫做形变。

  说明:

  ①任何物体都能发生形变,但是有的形变比较明显,有的形变及其微小。

  ②弹性形变:撤去外力后能恢复原状的形变,叫做弹性形变,简称形变。

  (2)弹力:发生形变的物体由于要恢复原状对跟它接触的物体会产生力的作用,这种力叫弹力。

  说明:

  ①弹力产生的条件:接触;弹性形变。

  ②弹力是一种接触力,必存在于接触的物体间,作用点为接触点。

  ③弹力务必产生在同时形变的两物体间。

  ④弹力与弹性形变同时产生同时消失。

  (3)弹力的方向:与作用在物体上使物体发生形变的外力方向相反。

  几种典型的产生弹力的理想模型:

  ①轻绳的拉力(张力)方向沿绳收缩的方向。注意杆的不一样。

  ②点与平面接触,弹力方向垂直于平面;点与曲面接触,弹力方向垂直于曲面接触点所在切面。

  ③平面与平面接触,弹力方向垂直于平面,且指向受力物体;球面与球面接触,弹力方向沿两球球心连线方向,且指向受力物体。

  (4)大小:弹簧在弹性限度内遵循胡克定律F=kx,k是劲度系数,表示弹簧本身的一种属性,k仅与弹簧的材料、粗细、长度有关,而与运动状态、所处位置无关。其他物体的弹力应根据运动状况,利用平衡条件或运动学规律计算。

  摩擦力

  (1)滑动摩擦力:一个物体在另一个物体表面上相当于另一个物体滑动的时候,要受到另一个物体阻碍它相对滑动的力,这种力叫做滑动摩擦力。

  说明:

  ①摩擦力的产生是由于物体表面不光滑造成的。

  ②摩擦力具有相互性。

  ⅰ滑动摩擦力的产生条件:A、两个物体相互接触;B、两物体发生形变;C、两物体发生了相对滑动;D、接触面不光滑。

  ⅱ滑动摩擦力的方向:总跟接触面相切,并跟物体的相对运动方向相反。

  说明:

  ①“与相对运动方向相反”不能等同于“与运动方向相反”

  ②滑动摩擦力可能起动力作用,也可能起阻力作用。

  ⅲ滑动摩擦力的大小:F=μFN

  说明:

  ①FN两物体表面间的`压力,性质上属于弹力,不是重力。应具体分析。

  ②μ与接触面的材料、接触面的粗糙程度有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  ⅳ效果:总是阻碍物体间的相对运动,但并不总是阻碍物体的运动。

  ⅴ、滚动摩擦:一个物体在另一个物体上滚动时产生的摩擦,滚动摩擦比滑动摩擦要小得多。

  (2)静摩擦力:两相对静止的相接触的物体间,由于存在相对运动的趋势而产生的摩擦力。

  说明:静摩擦力的作用具有相互性。

  ⅰ静摩擦力的产生条件:A、两物体相接触;B、相接触面不光滑;C、两物体有形变;D、两物体有相对运动趋势。

  ⅱ静摩擦力的方向:总跟接触面相切,并总跟物体的相对运动趋势相反。

  说明:

  ①运动的物体能够受到静摩擦力的作用。

  ②静摩擦力的方向能够与运动方向相同,能够相反,还能够成任一夹角θ。

  ③静摩擦力能够是阻力也能够是动力。

  ⅲ静摩擦力的大小:两物体间的静摩擦力的取值范围0<F≤Fm,其中Fm为两个物体间的最大静摩擦力。静摩擦力的大小应根据实际运动状况,利用平衡条件或牛顿运动定律进行计算。

  说明:

  ①静摩擦力是被动力,其作用是与使物体产生运动趋势的力相平衡,在取值范围内是根据物体的“需要”取值,所以与正压力无关。

  ②最大静摩擦力大小决定于正压力与最大静摩擦因数效果:总是阻碍物体间的相对运动的趋势。

  受力分析的程序是:

  1、根据题意选取适当的研究对象,选取研究对象的原则是要使对物体的研究处理尽量简便,研究对象能够是单个物体,也能够是几个物体组成的系统。

  2、把研究对象从周围的环境中隔离出来,按照先外力,再接触力的顺序对物体进行受力分析,并画出物体的受力示意图,这种方法常称为隔离法。

  3、对物体受力分析时,应注意一下几点:

  (1)不要把研究对象所受的力与它对其它物体的作用力相混淆。

  (2)对于作用在物体上的每一个力都务必明确它的来源,不能无中生有。

  (3)分析的是物体受哪些“性质力”,不要把“效果力”与“性质力”重复分析。

  力的合成

  求几个共点力的合力,叫做力的合成。

  (1)力是矢量,其合成与分解都遵循平行四边形定则。

  (2)一条直线上两力合成,在规定正方向后,可利用代数运算。

  (3)互成角度共点力互成的分析

  ①两个力合力的取值范围是|F1——F2|≤F≤F1+F2

  ②共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零。

  ③同时作用在同一物体上的共点力才能合成(同时性和同体性)。

  ④合力可能比分力大,也可能比分力小,也可能等于某一个分力。

高一物理知识点总结8

  第四章力与运动

  第一节伽利略理想实验与牛顿第一定律

  伽利略的理想实验(见P76、77,以及单摆实验)

  牛顿第一定律

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。——物体的运动并不需要力来维持。

  2.物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

  3.惯性是物体的固有属性,与物体受力、运动状态无关,质量是物体惯性大小的唯一量度。

  4.物体不受力时,惯性表现为物体保持匀速直线运动或静止状态;受外力时,惯性表现为运动状态改变的难易程度不同。

  第二、三节影响加速度的因素/探究物体运动与受力的关系

  加速度与物体所受合力、物体质量的关系(实验设计见B书P93)

  第四节牛顿第二定律

  牛顿第二定律

  1.牛顿第二定律:物体的加速度跟所受合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

  2.a=k·F/m(k=1)→F=ma

  3.k的数值等于使单位质量的物体产生单位加速度时力的大小。国际单位制中k=1。

  4.当物体从某种特征到另一种特征时,发生质的飞跃的转折状态叫做临界状态。

  5.极限分析法(预测和处理临界问题):通过恰当地选取某个变化的物理量将其推向极端,从而把临界现象暴露出来。

  6.牛顿第二定律特性:

  1)矢量性:加速度与合外力任意时刻方向相同

  2)瞬时性:加速度与合外力同时产生/变化/消失,力是产生加速度的原因。

  3)相对性:a是相对于惯性系的,牛顿第二定律只在惯性系中成立。

  4)独立性:力的独立作用原理:不同方向的合力产生不同方向的'加速度,彼此不受对方影响。

  5)同体性:研究对象的统一性。

  第五节牛顿第二定律的应用

  解题思路:物体的受力情况牛顿第二定律a运动学公式物体的运动情况

  第六节超重与失重

  超重和失重

  1.物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况称为超重现象(视重物重),物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况称为失重现象(物重视重)。

  2.只要竖直方向的a≠0,物体一定处于超重或失重状态。

  3.视重:物体对支持物的压力或对悬挂物的拉力(仪器称值)。

  4.实重:实际重力(来源于万有引力)。

  5.N=G+ma(设竖直向上为正方向,与v无关)

  6.完全失重:一个物体对支持物的压力(或对悬挂物的拉力)为零,达到失重现象的极限的现象,此时a=g=9.8m/s。

  7.自然界中落体加速度不大于g,人工加速使落体加速度大于g,则落体对上方物体(如果有)产生压力,或对下方牵绳产生拉力。

  第七节力学单位

  单位制的意义

  1.单位制是由基本单位和导出单位组成的一系列完整的单位体制。

  2.基本单位可任意选定,导出单位则由定义方程式与比例系数确定的。基本单位选取的不同,组成的单位制也不同。

  国际单位制中的力学单位

  1.国际单位制(符号~单位):时间(t)~s,长度(l)~m,质量(m)~kg,电流(I)~A,物质的量(n)~mol,热力学温度~K,发光强度~cd(坎培拉)

  2.1N:使1kg的物体产生单位加速度时力的大小,即1N=1kg·m/s。

  3.常见单位换算:1英尺=12英寸=0.3048m,1英寸=2.540cm,1英里=1.6093km。

高一物理知识点总结9

  一、基本概念

  1、质点

  2、 参考系

  3、坐标系

  4、时刻和时间间隔

  5、路程:物体运动轨迹的长度

  6、位移:表示物体位置的变动。可用从起点到末点的有向线段来表示,是矢量。位移的大小小于或等于路程。

  7、速度:

  物理意义:表示物体位置变化的快慢程度。

  分类平均速度:方向与位移方向相同

  瞬时速度:

  与速率的区别和联系速度是矢量,而速率是标量

  平均速度=位移/时间,平均速率=路程/时间

  瞬时速度的大小等于瞬时速率

  8、加速度

  物理意义:表示物体速度变化的快慢程度

  定义:(即等于速度的变化率)

  方向:与速度变化量的方向相同,与速度的方向不确定。(或与合力的方向相同)

  二、运动图象(只研究直线运动)

  1、x—t图象(即位移图象)

  (1)、纵截距表示物体的初始位置。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。

  (3)、斜率表示速度。斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。

  2、v—t图象(速度图象)

  (1)、纵截距表示物体的初速度。

  (2)、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动(加速度大小发生变化)。

  (3)、纵坐标表示速度。纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。

  (4)、斜率表示加速度。斜率的绝对值表示加速度的大小,斜率的正负表示加速度的`方向。

  (5)、面积表示位移。横轴上方的面积表示正位移,横轴下方的面积表示负位移。

  三、实验:用打点计时器测速度

  1、两种打点即使器的异同点

  2、纸带分析;

  (1)、从纸带上可直接判断时间间隔,用刻度尺可以测量位移。

  (2)、可计算出经过某点的瞬时速度

  (3)、可计算出加速度

  高一必修1物理知识点归纳

  匀速直线运动的速度与时间的关系

  匀速直线运动

  1、定义:物体沿着直线运动,而且保持加速度不变,这种运动叫做匀变速直线运动。

  2、匀变速直线运动的分类:

  3、匀变速直线运动的v—t图象

  实验小车的v—t图象是一条倾斜直线。由此可知,无论Δt取何值,无论在什么时间阶段,Δt对应的速度变化Δv都相同,即Δv/Δt不变,则物体的加速度不变。所以匀变速直线运动的v—t图象是一条倾斜直线。在数学函数图象中,Δv/Δt叫做图象的斜率,故v—t图象的斜率表示物体做匀变速直线运动的加速度的大小。

  高一必修1物理知识点归纳:牛顿运动定律的应用

  1、动力学的两类基本问题:

  (1)已知物体的受力情况,确定物体的运动情况。基本解题思路是:

  ①根据受力情况,利用牛顿第二定律求出物体的加速度。

  ②根据题意,选择恰当的运动学公式求解相关的速度、位移等。

  (2)已知物体的运动情况,推断或求出物体所受的未知力。基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度。

  ②根据牛顿第二定律确定物体所受的合外力,从而求出未知力。

  (3)注意点:

  ①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图。不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键。

  ②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化。

  2、关于超重和失重:

  在平衡状态时,物体对水平支持物的压力大小等于物体的重力。当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力。当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象。当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。对其理解应注意以下三点:

  (1)当物体处于超重和失重状态时,物体的重力并没有变化。

  (2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向。

  (3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等。

  易错现象:

  (1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

  (2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。

  (3)些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少啦。

  高一物理知识点归纳

  线速度V=s/t=2πR/T2。角速度ω=Φ/t=2π/T=2πf

  向心加速度a=V^2/R=ω^2R=(2π/T)^2R4。向心力F心=Mv^2/R=mω^2_=m(2π/T)^2_

  周期与频率T=1/f6。角速度与线速度的关系V=ωR

  角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)

  周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s

  角速度(ω):rad/s向心加速度:m/s2

  注:

  (1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。

  (2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

高一物理知识点总结10

  1、质点:

  (1)没有形状、大小且有质量的点

  (2)质点是一个理想化模型,实际并不存在

  (3)一个物体是否能看成质点并不取决于这个物体的大小,而是看所研究的问题中物体的形状大小和物体上各部分运动情况的差异是否为可以忽略的次要因素,要具体问其具体分析。

  2、路程和位移

  位移

  路程

  表示物体位置变化的物理量

  质点运动轨迹的长度

  矢量,可以用初位置指向末位置的有向线段来表示,既有大小又有方向

  标量,只有大小,没有方向

  大小等于初位置到末位置的直线距离

  大小与运动路径有关

  4、速度、平均速度和瞬时速度(A)

  (1)表示物体运动快慢的物理量,它等于位移s跟发生这段位移所用时间t的比值。即v=s/t。速度是矢量,既有大小也有方向,其方向就是物体运动的方向。在国际单位制中,速度的单位是(m/s)米/秒。

  (2)平均速度是描述作变速运动物体运动快慢的物理量。一个作变速运动的物体,如果在一段时间t内的位移为s,则我们定义v=s/t为物体在这段时间(或这段位移)上的平均速度。平均速度也是矢量,其方向就是物体在这段时间内的位移的方向。

  (3)瞬时速度是指运动物体在某一时刻(或某一位置)的速度。从物理含义上看,瞬时速度指某一时刻附近极短时间内的平均速度。瞬时速度的大小叫瞬时速率,简称速率.

  5、匀速直线运动(A)

  (1)定义:物体在一条直线上运动,如果在相等的时间内位移相等,这种运动叫做匀速直线运动。

  根据匀速直线运动的特点,质点在相等时间内通过的位移相等,质点在相等时间内通过的路程相等,质点的运动方向相同,质点在相等时间内的.位移大小和路程相等。

  6、加速度(A)

  (1)加速度的定义:加速度是表示速度改变快慢的物理量,它等于速度的改变量跟发生这一改变量所用时间的比值,定义式:

  (2)加速度是矢量,它的方向是速度变化的方向

  (3)在变速直线运动中,若加速度的方向与速度方向相同,则质点做加速运动;若加速度的方向与速度方向相反,则则质点做减速运动。

高一物理知识点总结11

  1、电场线:用来形象描述电场的假想曲线,是由法拉第引入的。

  理解:①、起始于正电荷(无穷远处),终止于负电荷(无穷远处),不是闭合曲线,不相交。

  ②、电场线上一点的切线方向为该点场强方向。

  ③、电场线的疏密程度反映了场强的大小。

  ④、匀强电场的电场线是平行等距的直线。

  ⑤、沿电场线方向电势逐点降低,是电势最低最快的方向。

  ⑦、电场线并非电荷运动的轨迹。

  2、等势面:电势相等的点构成的面有以下特征;

  ①在同一等势面上移动电荷电场力不做功。

  ②等势面与电场力垂直。

  ③电场中任何两个等势面不相交。

  ④电场线由高等势面指向低等势面。

  ⑤规定:相邻等势面间的电势差相差,所以等势面的疏密反映了场强的大小(匀强点电荷电场等势面的`特点)

  ⑥几种等势面的性质

  A、等量同种电荷连线和中线上

  连线上:中点电势最小

  中线上:由中点到无穷远电势逐渐减小,无穷远电势为零。

  B、等量异种电荷连线上和中线上

  连线上:由正电荷到负电荷电势逐渐减小。

  中线上:各点电势相等且都等于零。

  3、电场力做功与电势能的关系:

  ①、通过电场力做功说明:电场力做正功,电势能减小。

  电场力做负功,电势能增大。

  ②、正电荷:顺着电场线移动时,电势能减小。

  逆着电场线移动时,电势能增加。

  负电荷:顺着电场线移动时,电势能增加。

  逆着电场线移动时,电势能减小。

  ③、求电荷在电场中A、B两点具有的电势能高低

  将电荷由A点移到B点根据电场力做功情况判断,电场力做正功,电势能减小,电荷在A点电势能大于在B点的电势能,反之电场力做负功,电势能增加,电荷在B点的电势能小于在B点的电势能

  ④、在正电荷产生的电场中正电荷在任意一点具有的电势能都为正,负电荷在任一点具有的电势能都为负。

  在负电荷产生的电场中正电荷在任意一点具有的电势能都为负,负电荷在任意一点具有的电势能都为正。

高一物理知识点总结12

  一、运动学的基本概念

  1、参考系:描述一个物体的运动时,选来作为标准的的另外的物体。

  运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。

  参考系的选取是任意的,被选为参考系的物体,我们假定它是静止的。选取不一样的物体作为参考系,可能得出不一样的结论,但选取时要使运动的描述尽量的简单。

  通常以地面为参考系。

  2、质点:

  ①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

  ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响能够忽略。且物体能否看成质点,要具体问题具体分析。

  ③物体可被看做质点的几种状况:

  (1)平动的物体通常可视为质点.

  (2)有转动但相对平动而言能够忽略时,也能够把物体视为质点.

  (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则能够.

  关键一点

  (1)不能以物体的大小和形状为标准来决定物体是否能够看做质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响能够忽略不计时,物体可视为质点.

  (2)质点并不是质量很小的点,要区别于几何学中的“点”.

  3、时光和时刻:

  时刻是指某一瞬间,用时光轴上的一个点来表示,它与状态量相对应;时光是指起始时刻到终止时刻之间的间隔,用时光轴上的一段线段来表示,它与过程量相对应。

  4、位移和路程:

  位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

  路程是质点运动轨迹的长度,是标量。

  5、速度:

  用来描述质点运动快慢和方向的物理量,是矢量。

  (1)平均速度:是位移与通过这段位移所用时光的比值,其定义式为,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

  (2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它能够精确变速运动。瞬时速度的大小简称速率,它是一个标量。

  6、加速度:用量描述速度变化快慢的的物理量,其定义式为。

  加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

  易错现象

  1、忽略位移、速度、加速度的矢量性,只思考大小,不注意方向。

  2、错误理解平均速度,随意使用。

  3、混淆速度、速度的增量和加速度之间的关系。

  二、匀变速直线运动的规律及其应用:

  1、定义:在任意相等的时光内速度的变化都相等的直线运动

  2、匀变速直线运动的基本规律,可由下方四个基本关系式表示:

  (1)速度公式

  (2)位移公式

  (3)速度与位移式

  (4)平均速度公式

  3、几个常用的推论:

  (1)任意两个连续相等的时光T内的位移之差为恒量

  △x=x2-x1=x3-x2=……=xn-xn-1=aT2

  (2)某段时光内时光中点瞬时速度等于这段时光内的平均速度。

  (3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为

  4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论

  ①1T末,2T末,3T末……瞬时速度之比为:

  v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

  ②1T内,2T内,3T内……位移之比为:

  x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n——1)

  ③第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:

  xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

  ④通过连续相等的位移所用时光之比为:

  t1∶t2∶t3∶……∶tn=

  易错现象:

  1、在一系列的公式中,不注意的v、a正、负。

  2、纸带的处理,是这部分的重点和难点,也是易错问题。

  3、滥用初速度为零的匀加速直线运动的特殊公式。

  三、自由落体运动,竖直上抛运动

  1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。

  2、自由落体运动规律

  ①速度公式:

  ②位移公式:

  ③速度—位移公式:

  ④下落到地面所需时光:

  3、竖直上抛运动:

  能够看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,能够把它分为向上和向下两个过程来处理。

  (1)竖直上抛运动规律

  ①速度公式:

  ②位移公式:

  ③速度—位移公式:

  两个推论:

  上升到最高点所用时光

  上升的最大高度

  (2)竖直上抛运动的对称性

  如图1——2——2,物体以初速度v0竖直上抛,A、B为途中的任意两点,C为最高点,则:

  (1)时光对称性

  物体上升过程中从A→C所用时光tAC和下降过程中从C→A所用时光tCA相等,同理tAB=tBA。

  (2)速度对称性

  物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.

  关键一点

  在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时光多解或者速度多解.

  易错现象

  1、忽略自由落体运动务必同时具备仅受重力和初速度为零

  2、忽略竖直上抛运动中的多解

  3、小球或杆过某一位置或圆筒的问题

  四、运动的图象运动的相遇和追及问题

  1、图象:

  图像在中学物理中占有举足轻重的地位,其优点是能够形象直观地反映物理量间的函数关系。位移和速度都是时光的函数,在描述运动规律时,常用x—t图象和v—t图象。

  (1)x—t图象

  ①物理好处:反映了做直线运动的物体的`位移随时光变化的规律。②表示物体处于静止状态

  ②图线斜率的好处

  ①图线上某点切线的斜率的大小表示物体速度的大小.

  ②图线上某点切线的斜率的正负表示物体方向.

  ③两种特殊的x——t图象

  (1)匀速直线运动的x——t图象是一条过原点的直线.

  (2)若x——t图象是一条平行于时光轴的直线,则表示物体处

  于静止状态

  (2)v—t图象

  ①物理好处:反映了做直线运动的物体的速度随时光变化

  的规律.

  ②图线斜率的好处

  a图线上某点切线的斜率的大小表示物体运动的加速度的大小。

  b图线上某点切线的斜率的正负表示加速度的方向.

  ③图象与坐标轴围成的“面积”的好处

  a图象与坐标轴围成的面积的数值表示相应时光内的位移的大小。

  b若此面积在时光轴的上方,表示这段时光内的位移方向为正方向;若此面积在时光轴的下方,表示这段时光内的位移方向为负方向.

  ③常见的两种图象形式

  (1)匀速直线运动的v——t图象是与横轴平行的直线.

  (2)匀变速直线运动的v——t图象是一条倾斜的直线.

  2、相遇和追及问题:

  这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件,通常有两种状况:

  (1)物体A追上物体B:开始时,两个物体相距x0,则A追上B时必有,且

  (2)物体A追赶物体B:开始时,两个物体相距x0,要使A与B不相撞,则有

  易错现象:

  1、混淆x—t图象和v-t图象,不能区分它们的物理好处

  2、不能正确计算图线的斜率、面积

  3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

  五、力重力弹力摩擦力

  1、力:

  力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

  按照力命名的依据不一样,能够把力分为

  ①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

  ②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

  力的作用效果:

  ①形变;

  ②改变运动状态.

  2、重力:

  由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,注意:重力是万有引力的一个分力,另一个分力带给物体随地球自转所需的向心力,在两极处重力等于万有引力.由于重力远大于向心力,一般状况下近似认为重力等于万有引力.

  3、弹力:

  (1)资料:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

  (2)条件:

  ①接触;

  ②形变。但物体的形变不能超过弹性限度。

  (3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

  (4)大小:

  ①弹簧的弹力大小由F=kx计算

  ②一般状况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定.

  4、摩擦力:

  (1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可.

  (2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反.但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度.

  (3)摩擦力的大小:

  ①滑动摩擦力:

  说明:a、FN为接触面间的弹力,能够大于G;也能够等于G;也能够小于G

  b、为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面

  积大小、接触面相对运动快慢以及正压力FN无关。

  ②静摩擦:由物体的平衡条件或牛顿第二定律求解,与正压力无关。

  大小范围0

  (fm为最大静摩擦力,与正压力有关)

  静摩擦力的具体数值可用以下方法来计算:一是根据平衡条件,二是根据牛顿第二定律求出合力,然后通过受力分析确定.

  (4)注意事项:

  a、摩擦力能够与运动方向相同,也能够与运动方向相反,还能够与运动方向成必须夹角。

  b、摩擦力能够作正功,也能够作负功,还能够不作功。

  c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

  d、静止的物体能够受滑动摩擦力的作用,运动的物体能够受静摩擦力的作用。

  易错现象:

  1.不会确定系统的重心位置

  2.没有掌握弹力、摩擦力有无的判定方法

  3.静摩擦力方向的确定错误

  六、力的合成和分解

  1、标量和矢量:

  (1)将物理量区分为矢量和标量体现了用分类方法研究物理问题.

  (2)矢量和标量的根本区别在于它们遵从不一样的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则.

  (3)同一向线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等.

  2、力的合成与分解:

  (1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,这个力就叫做那几个力的合力,而那几个力叫做这个力的分力。

  (2)共点力的合成:

  1、共点力

  几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

  2、力的合成方法

  求几个已知力的合力叫做力的合成。

  ①若和在同一条直线上

  a。、同向:合力方向与、的方向一致

  b。、反向:合力,方向与、这两个力中较大的那个力向。

  ②、互成θ角——用力的平行四边形定则

  3、平行四边形定则:

  两个互成角度的力的合力,能够用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

  求F、的合力公式:(为F1、F2的夹角)

  注意:(1)力的合成和分解都均遵从平行四边行法则。

  (2)两个力的合力范围:F1——F2FF1+F2

  (3)合力能够大于分力、也能够小于分力、也能够等于分力

  (4)两个分力成直角时,用勾股定理或三角函数。

  注意事项:

  (1)力的合成与分解,体现了用等效的方法研究物理问题.

  (2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时务必把合力与各分力脱钩,即思考合力则不能思考分力,同理在力的分解时只思考分力,而不能同时思考合力.

  (3)共点的两个力合力的大小范围是

  |F1——F2|≤F合≤Fl+F2.

  (4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零.

  (5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解.

  (6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力).

  易错现象:

  1.对含静摩擦力的合成问题没有掌握其可变特性

  2.不能按力的作用效果正确分解力

  3.没有掌握正交分解的基本方法

  七、受力分析

  1、受力分析:

  要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

  (1)确定研究对象,并隔离出来;

  (2)先画重力,然后弹力、摩擦力,再画电、磁场力;

  (3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;

  (4)合力或分力不能重复列为物体所受的力.

  2、整体法和隔离体法

  (1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不思考整体内部之间的相互作用力。

  (2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不思考物体对其它物体的作用力。

  (3)方法选取

  所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必思考内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

  3、注意事项:

  正确分析物体的受力状况,是解决力学问题的基础和关键,在具体操作时应注意:

  (1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处决定弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力.

  (2)画受力图时要逐一检查各个力,找不到施力物体的力必须是无中生有的.同时应只画物体的受力,不能把对象对其它物体的施力也画进去.

  易错现象:

  1.不能正确判定弹力和摩擦力的有无;

  2.不能灵活选取研究对象;

  3.受力分析时受力与施力分不清。

  八、共点力作用下物体的平衡

  1、物体的平衡:

  物体的平衡有两种状况:一是质点静止或做匀速直线运动;二是物体不转动或匀速转动(此时的物体不能看作质点).

  2、共点力作用下物体的平衡:

  ①平衡状态:静止或匀速直线运动状态,物体的加速度为零.

  ②平衡条件:合力为零,亦即F合=0或∑Fx=0,∑Fy=0

  a、二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。

  b、三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡

  c、若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:

  F合x=F1x+F2x+………+Fnx=0

  F合y=F1y+F2y+………+Fny=0(按接触面分解或按运动方向分解)

  ③平衡条件的推论:

  (ⅰ)当物体处于平衡状态时,它所受的某一个力与所受的其它力的合力等值反向.

  (ⅱ)当三个共点力作用在物体(质点)上处于平衡时,三个力的矢量组成一封闭的三角形按同一环绕方向.

  3、平衡物体的临界问题:

  当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。

  临界问题的分析方法:极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。

  易错现象:

  (1)不能灵活应用整体法和隔离法;

  (2)不注意动态平衡中边界条件的约束;

  (3)不能正确制定临界条件。

  九、牛顿运动三定律

  1、牛顿第必须律:

  (1)资料:一切物体总持续匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.

  (2)理解:

  ①它说明了一切物体都有惯性,惯性是物体的固有性质.质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关).

  ②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因。

  ③它是通过理想实验得出的,它不能由实际的实验来验证.

  2、牛顿第二定律:

  资料:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同.

  公式:

  理解:

  ①瞬时性:力和加速度同时产生、同时变化、同时消失.

  ②矢量性:加速度的方向与合外力的方向相同。

  ③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)

  ④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的。

  3、牛顿第三定律:

  (1)资料:

  两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上.

  (2)理解:

  ①作用力和反作用力的同时性.它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力.

  ②作用力和反作用力的性质相同.即作用力和反作用力是属同种性质的力.

  ③作用力和反作用力的相互依靠性:它们是相互依存,互以对方作为自我存在的前提.

  ④作用力和反作用力的不可叠加性.作用力和反作用力分别作用在两个不一样的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消.

  4、牛顿运动定律的适用范围:

  对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理.

  易错现象:

  (1)错误地认为惯性与物体的速度有关,速度越大惯性越大,速度越小惯性越小;另外一种错误是认为惯性和力是同一个概念。

  (2)不能正确地运用力和运动的关系分析物体的运动过程中速度和加速度等参量的变化。

  (3)不能把物体运动的加速度与其受到的合外力的瞬时对应关系正确运用到轻绳、轻弹簧和轻杆等理想化模型上

高一物理知识点总结13

  高中物理‘加速度’,一般都是指‘匀加速度’,即,加速度是一个常量

  1、加速度a与速度V的关系贴合下式:V==at,t为时光变量,我们有

  a==V/t

  证明,加速度a,就是速度V在单位时光内的平均变化率。

  2、V==at是一个直线方程,它相当于数学上的y=kx(V相当于y,t相当于x,a相当于k)

  数学知识指出,k是特定直线y=kx的斜率,直线斜率有如下性质:

  (1)不一样直线(彼此不平行)的斜率,数值不等

  (2)同一向线上斜率的数值,处处相等(与y和x的数值无关)

  (3)直线斜率的数值,能够通过y和x的数值来求算:

  k==y/x

  (4)虽然k==y/x,但是,y==0,x==0,k不为零。

  仿此,(1)不一样运动的加速度,数值不等

  (2)同一运动的加速度数值,处处相等(与V和t的数值无关)

  (3)运动的加速度数值,能够通过V和t的数值来求算:

  ==V/t

  (4)虽然a==V/t,但是V==0(由静止开始云动),t==0,但a不为零。

  变加速运动中的物体加速度在减小而速度却在增大,以及加速度不为零的'物体速度大小却可能不变。(这两句怎样理解啊?举几个例子?

  变加速运动中加速度减小速度当然是增大了,只有加速度的方向与速度方向一致那么速度就是增加的,与加速度大小没有关系,例如从一个半圆形轨道上滑下的一个木块,它沿水平方向的加速度是减小的,但速度是增加的。

  加速度在与速度方向在同一条直线上时才改变速度的大小,有加速度那么速度就得改变,如果想让速度大小不变,那么就得让它的方向改变,如匀速圆周运动,加速度的大小不变且不为0,速度方向不断改变但大小不变。

  刹车方面应用题:汽车以15米每秒的速度行驶,司机发现前方有危险,在0、8s之后才能作出反应,立刻制动,这个时光称为反应时光。若汽车刹车时能产生最大加速度为5米每二次方秒,从汽车司机发现前方有危险立刻制动刹车到汽车完全停下来,汽车所通过的距离叫刹车距离。问该汽车的刹车距离为多少?(最好附些过程,多谢)

  15米/秒加速度是5米/二次方秒那么停止需要3秒钟

高一物理知识点总结14

  一、质点的运动

  (1)------直线运动

  1)匀变速直线运动

  1.平均速度V平=S/t(定义式)2.有用推论Vt^2Vo^2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo^2+Vt^2)/2]1/26.位移S=V平t=Vot+at^2/2=Vt/2t7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

  2)匀速圆周运动

  1.线速度V=s/t=2πR/T

  2.角速度ω=Φ/t=2π/T=2πf

  3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R

  4.向心力F心=Mv^2/R=mω^2xR=m(2π/T)^2xR

  5.周期与频率T=1/f

  6.角速度与线速度的关系V=ωR

  7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

  8.主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s角速度(ω):rad/s向心加速度:m/s2

  注:

  (1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。

  (2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

  3)万有引力

  1.开普勒第三定律T2/R3=K(=4π^2/GM)R:轨道半径T:周期K:常量(与行星质量无关)

  2.万有引力定律F=Gm1m2/r^2G=6.67×10^-11Nm^2/kg^2方向在它们的连线上

  3.天体上的重力和重力加速度GMm/R^2=mgg=GM/R^2R:天体半径(m)

  4.卫星绕行速度、角速度、周期V=(GM/R)1/2ω=(GM/R^3)1/2T=2π(R^3/GM)1/25.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/sV2=11.2Km/sV3=16.7Km/s6.地球同步卫星GMm/(R+h)^2=mx4π^2(R+h)/T^2h≈3.6kmh:距地球表面的高度注:

  (1)天体运动所需的向心力由万有引力提供,F心=F万。

  (2)应用万有引力定律可估算天体的质量密度等。

  (3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。

  (5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。机械能1.功

  (1)做功的两个条件:作用在物体上的力.物体在里的方向上通过的距离.

  (2)功的大小:W=Fscosa功是标量功的.单位:焦耳(J)1J=1Nxm当0

  P=W/t功率是标量功率单位:瓦特(w)此公式求的是平均功率1w=1J/s1000w=1kw

  (2)功率的另一个表达式:P=Fvcosa

  当F与v方向相同时,P=Fv.(此时cos0度=1)此公式即可求平均功率,也可求瞬时功率1)平均功率:当v为平均速度时

  2)瞬时功率:当v为t时刻的瞬时速度

  (3)额定功率:指机器正常工作时最大输出功率实际功率:指机器在实际工作中的输出功率正常工作时:实际功率≤额定功率

  (4)机车运动问题(前提:阻力f恒定)P=FvF=ma+f(由牛顿第二定律得)

  汽车启动有两种模式

  1)汽车以恒定功率启动(a在减小,一直到0)P恒定v在增加F在减小尤F=ma+f当F减小=f时v此时有最大值

  2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)a恒定F不变(F=ma+f)V在增加P实逐渐增加最大此时的P为额定功率即P一定P恒定v在增加F在减小尤F=ma+f当F减小=f时v此时有最大值

  3.功和能

  (1)功和能的关系:做功的过程就是能量转化的过程功是能量转化的量度

  (2)功和能的区别:能是物体运动状态决定的物理量,即过程量功是物体状态变化过程有关的物理量,即状态量这是功和能的根本区别.

  4.动能.动能定理

  (1)动能定义:物体由于运动而具有的能量.用Ek表示表达式Ek=1/2mv^2能是标量也是过程量单位:焦耳(J)1kgxm^2/s^2=1J

  (2)动能定理内容:合外力做的功等于物体动能的变化表达式W合=ΔEk=1/2mv^2-1/2mv0^2

  适用范围:恒力做功,变力做功,分段做功,全程做功

  5.重力势能

  (1)定义:物体由于被举高而具有的能量.用Ep表示表达式Ep=mgh是标量单位:焦耳(J)

  (2)重力做功和重力势能的关系W重=-ΔEp

  重力势能的变化由重力做功来量度

  (3)重力做功的特点:只和初末位置有关,跟物体运动路径无关重力势能是相对性的,和参考平面有关,一般以地面为参考平面重力势能的变化是绝对的,和参考平面无关

  (4)弹性势能:物体由于形变而具有的能量

  弹性势能存在于发生弹性形变的物体中,跟形变的大小有关弹性势能的变化由弹力做功来量度

  6.机械能守恒定律

  (1)机械能:动能,重力势能,弹性势能的总称总机械能:E=Ek+Ep是标量也具有相对性

  机械能的变化,等于非重力做功(比如阻力做的功)

  ΔE=W非重

  机械能之间可以相互转化

  (2)机械能守恒定律:只有重力做功的情况下,物体的动能和重力势能发生相互转化,但机械能保持不变

  表达式:Ek1+Ep1=Ek2+Ep2成立条件:只有重力做功

高一物理知识点总结15

  一、动能

  如果一个物体能对外做功,我们就说这个物体具有能量。物体由于运动而具有的能。 Ek=mv2,其大小与参照系的选取有关。动能是描述物体运动状态的物理量。是相对量。

  二、动能定理

  做功可以改变物体的能量。所有外力对物体做的总功等于物体动能的增量。 W1+W2+W3+=mvt2—mv02

  1、反映了物体动能的变化与引起变化的'原因力对物体所做功之间的因果关系。可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小。所以正功是加号,负功是减号。

  2、增量是末动能减初动能。EK0表示动能增加,EK0表示动能减小。

  3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理。由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化。在动能定理中。总功指各外力对物体做功的代数和。这里我们所说的外力包括重力、弹力、摩擦力、电场力等。

  4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和。

  5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式。但动能定理是标量式。功和动能都是标量,不能利用矢量法则分解。故动能定理无分量式。在处理一些问题时,可在某一方向应用动能定理。

  6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的。但它也适用于变为及物体作曲线运动的情况。即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用。

  7、对动能定理中的位移与速度必须相对同一参照物。

【高一物理知识点总结】相关文章:

高一物理知识点总结11-02

高一物理知识点总结07-13

高一物理知识点总结08-09

高一物理知识点总结09-19

高一物理知识点总结【精选】10-17

高一物理必考知识点总结11-17

高一物理知识点总结[热门]10-14

(合集)高一物理知识点总结08-13

(热)高一物理知识点总结08-14

高一物理知识点总结【优选】10-16