小数的意义教案
作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的小数的意义教案,希望能够帮助到大家。
小数的意义教案1
教学内容:
义务教育课程标准实验教科书(西南师大版)四年级(下)第69~72页例1、例2和课堂活动第1,3,4题。
教学目标:
让学生结合现实情境,进一步认识小数及小数的计数单位,理解相邻两个计数单位的十进关系。
实验目标:
1、利用多媒体课件,激发学生认识小数学习小数的欲望。
2、通过直观、操作、推理等活动,让学生清楚、明确地归纳小数的意义,感受数学与生活的紧密联系,体会小数在日常生活中的作用。
教学准备:
课件、米尺、直尺等。
教学过程:
一、引入新知
课件演示:学生测量黑板的长,课桌长、高的过程
1、学生自己动手量一量黑板的长,课桌长、高这些数是不是都是整米数?
教师:在测量和计算中,有时得不到整数的结果,通常可以用小数表示。
2、回忆、练习1角=()10元=()元5角=()10元=()元1dm=()10m=()m3dm=()10m=()m
教师:关于小数,同学们还想知道什么?板书课题:小数的意义
二、探索新知
1、教学例1
(1)填一填,说一说。(课件出示例1第1个图)①此图用分数、小数该怎样表示?你是怎样想的.?说一说:0?7表示把一个正方形平均分成()份,取其中()份。 0?7里面有()个0?1。②像0?1,0?3,0?5,0?7这些一位小数,都表示把一个整体平均分成10份,分别取其中的1份、3份、5份、7份,也就是:一位小数表示十分之几。
(2)同理说一说。(课件出示后面两幅图)①第1个涂一个小格,第2个涂45个小格,用分数、小数来表示并说说是怎样想的?②讨论并归纳:百分之几写成几位小数?两位小数表示几分之几?
2、教学例2(认识三位小数)
(1)看一看,填一填。
课件出示①把1m平均分成10份,其中1份是1dm;平均分成100份,其中1份是1cm;平均分成1000份,其中1份是1mm。
(出示图)学生填分数和用小数表示。
1mm=()1000m=()m;146mm=()1000m=()m
②把一个正方体平均分成1000份。(第70页例2图)其中1份、25份,107份用分数和小数怎样表示?
(2)课件出示:说一说0?025,0?107分别表示什么以及它们的组成。
(3)归纳:表示千分之几写成几位小数?三位小数表示几分之几?
3、讨论、归纳小数的意义学生讨论:什么是小数?小数的计数单位有哪些?
归纳:课件出示:像0?7,0?45,0?025,0?25,0?107……这样表示十分之几、百分之几、千分之几……的数叫小数。0?1,0?01,0?001……就是小数的计数单位。每相邻两个计数单位间的进率是“10”。
(课件出示)数位顺序表。
学生自学数位顺序表。
三、课堂活动
完成课堂活动第1,3,4题。先学生独立完成,集体评议,让学生说说是怎样想的?
四、课堂小结
本节课学会了什么?还有什么困难?
《小数的意义》课后问卷
1、老师用课件演示:学生测量黑板的长,课桌长、高的过程,对你自己动手测量有帮助吗?( )
A、很有帮助 B、帮助不大 C、没有帮助
2、有了多媒体课件的展示,你是否加深了对小数意义的理解?( )
A、是的 B、不是
3、你喜欢老师用多媒体课件教授本节课吗?( )
A、很喜欢 B、无所谓 C、不喜欢
统计数据分析
学生对多媒体辅助教学的优化学习效果统计
图表
认同多媒体优化课堂教学的人数、认同率%
实验班(40人) 39 97.5%
对照班(40人) 33 82.5%
效果分析:
从实验数据可以看出,学生还是很喜欢有多媒体课件的课堂教学,实验班的认同率达到了97.5%,即使是对照班的学生,他们也希望老师能使用多媒体辅助教学,认同率也有82.5%。
在本节实验课中,通过课件演示学生测量黑板的长,课桌长、高的过程,大大提高了学生的学习兴趣,激发了学生自己动手测量的欲望,也为学生动手测量奠定了良好的基础。紧接着通过课件演示“10×1”的方条图、“10×10”的正方形图、直尺图、“10×10×10”的正方体图,以便于学生更好地观察它们的特点,从直观入手把图、分数、小数有机地联系起来,并在此基础上归纳出小数的意义。引导学生进行观察、操作、推理,从而归纳出小数的意义,培养了学生推理能力,让学生感受到数学知识和生活的紧密联系。
小数的意义教案2
一、设疑激趣
师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?
生:小数,从大屏幕上。
师:小数的意义就是小数表示什么?那你知道吗?
生:不知道。
师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?
生:遇见过。
师:在哪遇见过?
生1:在计算器上计算有余数的除法时出现了小数。
生2:去超市买东西时会遇见小数。(师跟进说标价是小数)
生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)
【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】
二、探究新知
1、小数的产生
师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?
生:(异口同声地回答)60厘米。
师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?
生:一百分之六十。
师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?
生:0.60。
师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?
生:9.58秒。
师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。
出示口算:
10÷10= 1÷10=
100÷10= 1÷100=
1000÷10= 1÷1000=
【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】
生: 0,赶紧改成1。
师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。
师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?
生:1里面有多少个十。
师:还可以用那句话来说?
生:把1平均分成10份,每份是几?都说是十分之一。
师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)
师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。
【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】
2、教学小数的意义
师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?
0.85 9.58 38.2 0.6 39.4 98.5
生:0.85 9.58是一类,其余是一类。
师:能不能说说你的分类理由?
生:后面是两位、一位。
师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?
生:三位小数,四位小数,五位小数……
师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。
【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】
【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】
教师出示:把 1米平均分成10份。
师:把1米平均分成10份,每一份是多长?
生:10厘米。
1分米。
师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?
生:一百分之一。
生:十分之一。
师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?
师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)
师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)
擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。
师:你发现分数与小数的联系了吗?
分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。
师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。
【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】
(2)认识两位小数
师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?
生:是一百分之一米。
师:还可以怎样表示呢?
生:0.01米,1厘米。(补充板书)
师:一百分之一米,它的分母是多少?(100)分母是100的分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。
【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】
交流自己写的:
师:你写的是多少?
生1: 7厘米,是7/100米,0.07米。
师:你能猜一猜两位小数与什么样的分数有关系吗?
(指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)
生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。
引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。
师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。
(3)认识三位小数
出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。
两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道
三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。
四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。
师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)
1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )
【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】
(4)抽象、概括小数的意义
师:小数是什么?
补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。
师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?
生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。
师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的`计数单位有哪些?
生:个、十、百、千、万……
师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。
3、小数单位间的进率
师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)
师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。
【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】
三、巩固练习
师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)
1、下面括号里能填几。
0.1米里有( )个0.01米,0.01米里面有( )个0.001米。
得出:相邻两个计数单位之间的进率是10。
师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。
【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】
2、(1)用合适的数表示图中的涂色部分。
(2)用合适的数表示图中的空白部分。
3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)
4、找朋友。
四、课堂总结
师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?
生:每相邻的计数单位之间的进率都是十。
生:小数就是分数。
生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。
五、你知道吗
了解小数的起源、发展史。
小数的意义教案3
一、教材说明
1、本单元的内容结构及其地位
本单元的教学内容与我们原来的老教材大致相通,可以先来看一下内容安排:
小节标题
主要内容
小数的意义和读写法
小数的意义(例1)
小数的读写(例2、例3)
小数的性质和大小比较
小数的性质(例1、例2、例3)
小数的大小比较(例4)
小数点位置移动引起小数大小的变化(例5、例6、例7)
生活中的小数
生活中的小数
单名数、复名数的互化(例1、例2)
求一个小数的近似数
求一个小数的近似数(例1)
把较大的数改写成用“万”、“亿”作单位的数(例2)
上面这些内容是在三年级“分数的`初步认识”和“小数的初步认识”的基础上教学的,是学生系统学习小数的开始。通过这部分内容的教学,使学生进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。
2、教材的编写特点
(1)注意给学生创设自主探索的空间。
本单元一些内容与前面的知识有一定的联系,教材在编排这些内容时,注意给学生创设自主探索的空间。如小数的读、写,学生在三年级下学期初步认识小数时已学习过,这里只是小数的数位增加了,读、写方法没有变。因此,教材先
出示一些小数,如:53页;例2、例3,让学生试着读、写,在读、写过程中进一步明确小数读、写的方法。
(2)重视对小数意义的理解
对小数意义的理解要涉及十进分数,由于学生没有系统学习分数的知识,理解分数的十进关系有困难,为此教材除了在正式教学小数的意义时,借助计量单位的十进关系(如,长度单位)来帮助学生理解外,在练习中还安排了很多根据十进制计量单位理解小数的实际意义的练习。如教科书第55页第4题“用手势比划下面的长度”,第57页第10题。
(3)、加强实践与生活的应用
小数在实际生活中的应用非常广泛,为了让学生体会这一点,教材单设一小节“生活中的小数”将生活中的小数、单名数与复名数的互化合并在一起进行教学。其中,单名数与复名数的互化还是从解决问题的角度来编排,使学生体会到单名数与复名数的互化是解决实际问题的需要。
(4)、改变了“小数点位置移动引起小数大小变化规律”中“扩大......倍”“缩小......倍”的说法。
“扩大......倍”与“缩小......倍”在小学数学阶段约定俗成的理解是:扩大几倍就是乘几。缩小几倍就是除以几。但是一些人对此有不同的看法,有人认为:数a扩大n倍,应是a+na倍,而不是na。也有人认为:“倍”只适用于数的扩大,不适用于数的缩小。考虑到上述问题以及与中学的衔接,教材中进行了尝试性的改变。在“小数点位置移动引起小数大小变化规律”中,将“扩大......倍”“缩小......倍”修改为“扩大到......倍”“缩小到......分之一。
3、教学目标:
(1)使学生理解小数的意义,认识小数的计数单位,会读、写小数,会比较小数的大小。
(2)使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。
(3)使学生会进行小数和十进复名数的相互改写。
(4)使学生能够根据要求会用”四舍五入法“保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。
二、课时划分
本单元设想用14课时来完成。具体划分如下:
第一课时:小数的产生和意义(P50~51、例1及练习九第1、2题)
第二课时:小数的读法和写法(P52~54、例2、例3及练习九第5、6、7题)
第三课时:练习九(P55~57、练习九第5~13题)
第四课时:小数的性质(P58~59、例1~例3及练习十第1~3题)
第五课时:小数的大小比较(P60、例4及练习十第4~7题)
第六课时:小数点移动引起小数大小的变化(P61~63、例5~例7及练习十第8题)
第七课时:练习十(P65~66、练习十第9题~13题)
第八课时:生活中的小数(P67~69、例1、例2及练习十一第3、4题)
第九、十课时:练习十一(P70~72)
第十一课时:求一个小数的近似数(P73~74、例1及练习十二第1、2题)
第十二课时:把小数改写成用万或亿作单位的数(P74、例2及练习十二第3、4题)
第十三课时:练习十二(P76~77)
第十四课时:复习与整理(P78~79)
小数的意义教案4
【教学内容】
《义务教育课程标准实验教科书/数学(人教版)四年级(下册)第50页。
【教学设想】
本课是在学生在三年级已经学习了“分数的初步认识”和“小数的初步认识”的基础上进行教学的,在教学时,我先提出比较开放的问题“你对小数已经有了哪些了解?试图了解学生真实的认知起点。其次是把教材上的直尺图改为数轴图,通过数形结合,知识迁移和实际操作等让学生主动建立小数与分数的联系,帮助学生理解小数的意义。另外是把小数各部分的名称,小数的读写法,计数单位等知识也适当渗透,这些渗透同样能促使学生进一步理解小数的意义。
【教学目标】
1、结合情景,让学生知道小数各部分的名称,了解小数的读写法。
2、借助数轴图和实际操作、想象,推理等使学生明确小数的计数单位,小数与分数、整数的内在联系,理解小数的意义。
3、通过观察、分析、对比、概括进一步提升学生的思维能力。
【过程预设】
一、引入
1、板书老师的身高1.79米,到底是多高呢?
2、你对小数已经有了哪些了解?
3、你能举出几个小数吗?
4、汇报,板书,交流读法。
5、观察这些小数,小数有几部分组成?
二、展开
(一)研究一位小数
1、板书0.1米,想一想,什么意思?出示数轴图,下面请你借助尺和笔,分一分,找一找,画一画,表示出0.1米?(学生操作)
2、展示学生的作品,学生交流评价。板书:0.1米=1/10米=1分米
3、继续观察,引导学生在数轴图继续用小数和分数表示。
4、(讨论)它们的关系很密切,你能用一句话说说这些分数和小数的联系吗?
(二)研究二位小数
1、想一想,如果现在要从0到1米上表示出0.01米,你觉得该怎么表示?说说你的想法?
2、引导学生得出0.01米用整数表示是1厘米,用分数表示就是1/100米。请你推理一下,得出其它的两位小数。
3、选择一些小数和分数板书,观察后你能仿照前面一位小数的发现用一句话说说分数和小数的联系吗?
(三)研究三位小数
1、想象一下,把0.01米再平均分成10份,就把0到1米一共分成了几份?得出0.001米=1/1000米=1毫米。
2、请同桌商量确定一个几毫米的刻度分别用小数和分数表示出来?板书一部分
3、观察后你还能用一句话说说分数和小数的联系吗?
4、照这样分下去,还可得到四位小数、五位小数,分别表示什么?补上......号
(四)比较概括,归纳意义
引导学生得出小数的意义。
三、练习
1、正方形纸表示1,你能表示出0.8和0.35吗?
想一想,怎么表示?交流方法。
2、机动。
四、总结:经过今天的学习,你有什么收获?有什么疑问?
植树问题
执教者:嘉兴南湖国际实验学校王建良
教学内容:人教版新课标实验教材第117页
教学设想:
每上一节课,总得回答一个问题-为什么要上这节课?每一节总有其核心的价值所在,也就是我们最想带给学生的东西,我们习惯于将它称之为一节课的主导目标。
在教学参考第189页,《数学广角》这一单元的教学目标描述如下:
1、使学生通过生活中的事例,初步体会解决植树问题的思想方法。
2、初步培养学生从实际问题中探索规律、找出解决问题的有效方法的能力。
3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教材共安排了三个例题,两端都种,两端都不种,封闭图形的植树问题。
在单元教学目标解读与教材分析的基础上,我将在不封闭图形上的植树问题安排在同一课时中教学,主导目标确定为:让学生初步体会解决植树问题的思想方法。在课堂教学实施中着力想解决好以下两个问题:
一是如何让学生经历一个”将复杂问题转化为一个简单的问题来研究,再运用所发现的规律来解决复杂的问题“的过程?(与教参单元教学目标2相对应)在这个过程中需要关注的'问题有:转化的需要,策略的产生,方法的可行性验证。
二是如何让学生理解植树问题在不同的情境下段数与棵数的不同关系?(与教参单元教学目标1相对应)在这个过程中,需要关注:学生正确表象的建立,段数与棵数的一一对应关系,处理好知其然与知其所以然之间的关系。
教学目标:
借助直观,通过点与线段的对应,理解段数与植树棵数之间的规律,建立不同情境下植树问题的数学模型。能运用得到的规律解决相关的实际问题。发展学生解决问题的意识与能力,渗透化归的数学思想方法。
教学过程:
一、在个体解读中理解情境
1、出示情境:同学们在全长500米的小路的一边植树(两端要栽)。一共需要多少棵树苗?
2、独立读题与思考,提出需要知道的补充条件-每两棵树间隔5米。
二、在独立解决中寻找答案
1、静静思考,请把你的答案写下来。
2、你是怎么想的?
三、在全班交流中形成冲突
1、说一说,你是怎么想的?
2、到底哪个答案才是正确的?
四、在独立探究中发现问题
1、用什么办法才能说清楚到底需要多少棵?(画线段图)
2、图画不下怎么办?
五、在合作交流中提供帮助
1、你是怎样画的?为什么这样画?
2、试着画一画。
六、在全班交流中发现规律
1、你画了几段,种几棵?
2、你发现了什么?
七、在教师引领下提升结构
1、在100段的时候需要多少棵?想象一下这幅线段图会是怎样的?
2、在什么情况下只需要100棵树呢?还有一种情况是什么?需要多少棵树?
3、我们刚才是怎样学习的?
八、在应用举例中解释模型
1、基本练习:全长200米,隔50米安一座,一共安多少座?(三种情况)
2、举例:生活中的植树问题。
小数的意义教案5
教学目标:
1.结合具体情境,掌握用“四舍五入法”求小数的近似数,会把较大的数改写成用“万”或“亿”作单位的数。
2.在学习小数意义和性质的过程中,培养探求知识的兴趣。
3.提高合作探索知识的能力。
重点难点:
用“四舍五入法”求小数的近似数。
教学方法:
启发引导、自主探究
教学过程:
一、复习导入新课
教师出示复习题,让学生板演。
372800 19000 725000000 844000000
师生共同订正,点拨“四舍五入法”求近似数。
教师引导学生观察信息窗。
二、讲授新课
1、教师提出问题:“测量同一个蛋的长度,为什么两个人的读数不一样呢?”给学生二分钟时间考虑。
一些学生可能看不出来,教师引导
教师引导学生按照整数求近似数的.方法——四舍五入,解决求小数近似数的问题。
2、 教师出示数值“3.9423”让学生解决。
学生有的可能写出“3.94”。
有的可能写出“3.9”。
有的可能写出“4”。
3、教师引导学生比较探究结果的不同,分组讨论,然后让学生回答。
4、教师和学生共同归纳总结:用“四舍五入”法求小数的近似数
保留一位小数时,只看它的百分位上的数是大于5,还是小于5。如果大于或等于5,就向前一位进一,同时将百分位及百分位后面的数舍去;如果是小于5,就直接将百分位及百分位后面的数全部舍去。
5、教师引导学生分析总结:用“四舍五入法”求小数近似数应注意什么?
有的学生可能回答注意小数点;
有的学生可能回答注意别忘进位;
有的学生可能回答注意四舍五入……
教师引导学生一起总结。
三、巩固运用
教师让学生做自主练习第1—3题,用多种形式巩固求小数近似数的基本练习。(学生独立完成)
四、点拨归纳
教师归纳本课的所学的数学知识,点拨疑难点。(学生小组中充分交流)
五、布置作业
自主练习题4、5、题。
板书设计:
蛋的世界——小数的意义和性质
3.9423≈3.94
≈3.9 四舍五入≈4
1754000=175.4万 1754000≈175万
小数的意义教案6
教学目标:
1、借助计数器,掌握小数的数位。
2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。
3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。 教学重点:
掌握小数的数位和计数单位。
教学难点:
掌握小数的基本性质。
教学准备:
课件、计数器
教学过程:
一、复习旧知,导入新课
过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?
(课件出示)1、填空。
3写成小数是( ) 10
660.56表示()写成小数是() 100
6780.625表示( )写成小数是( ) 10000.4表示( )
2、读一读下面一段话中的小数。
北京地铁10号线列车的最高运行速度是80千米/时,约为22.222米/秒。
师揭题:今天这节课,我们首先要来研究小数“22.222”中每个数字的含义。(板书课题:小数的意义(三))
二、动手操作,探究新知
1、认识数位。
出示计数器,师问:这个计数器有什么特点?
学生观察后汇报
师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“22.222”吗?学生尝试在计数器上拨数,师指名上台演示。
课件出示拨数情况,引导学生认识:
“22.222” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个0.1.
师提问:小数点右边第2个“2”在百分位上,它表示2个
引导学生思考后回答:11,用小数表示是0.1,所以这个“2”也可以表示210101,它也可以表示多少? 1001可以写成0.01,所以这个“2”表示2个0.01. 100
师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?
学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个0.001. 1000
师引导学生再次思考:小数点左边两个2分别表示多少?
学生先独立思考,再小组内交流,最后集体汇报。
2、认识计数单位及计数单位之间的进率。
师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的'呢?
课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:
小数点右边第一位是十分位,计数单位是十分之一(0.1);
小数点右边第二位是百分位,计数单位是百分之一(0.01);
小数点右边第三位是千分位,计数单位是千分之一(0.001);
小数点右边第四位是万分位,计数单位是万分之一(0.0001);
课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?
学生讨论后汇报交流,师生共同总结:
相同点:相邻计数单位间的进率都是10.
不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——0.1.
师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个0.1元是1元;10个0.01元是0.1元,再次明确小数的计数单位是“满十进1”。
三、巩固运用,拓展提升
1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条5.00元,这两个毛巾的价格一样吗?
引导学生讨论后交流汇报。
2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?
让学生自主涂色,并汇报:0.6和0.60一样大。
师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么0.6和0.60一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3、即时练习。
课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?
3.203.09 6.06 50.44 5.700 200.04
四、课堂小结
通过这节课的学习,我们学会了哪些知识?
板书设计:
小数的意义教案7
【第一课时】
复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)
复习要求:
1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。
2.使学生掌握用四舍五人法取积、商是小数的近似值。复习重点:进一步提高计算的正确率和熟练程度。
复习过程:
一、基本练习
1.口算。05。381。40。20。156800。58。50。21。250。83。910
3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数
10。395
2。047
0。9292
二、复习指导
1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()
③8。40。4表示()④8。44表示()(2)思考并回答。
①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。
(1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125
①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的'小数位数不够,应怎么办?
②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。
三、课堂练习
1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03
0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95
先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。
2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?
生独立审题,分析数量关系并列式计算。
四、作业
练习九第1、2题
【第二课时】
复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)
复习要求:
1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。
2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。
复习重点:小数的混合运算和简便计算的正确率及熟练程度。
复习过程:
一、基本训练
练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63
10-1。8-2。20。46280。1254。80。20。50。71。42。430
0。30。152根据学生情况限时做在课本上,集体订正。
二、复习指导
1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14
(1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。
2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?
(2)学生独立简算。(指4名学生板演。)(3)集体订正。
三、课堂练习
1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。
2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价
篮球只78。6元
排球3只145。20元
总计金额302。40元
(1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的单价?并选代表发言。(2)学生填写,教师巡视。
(3)集体订正。
四、攻破难题
1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?
分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的.关系,用被除数3。6除以商2。4,得到除数是1。5。
2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?
分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:
(20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业
练习九第6题、思考题。
小数的意义教案8
课题:人民教育出版社第八册《数学》第四单元第1课《小数的意义》
教学目标:
1、使学生知道小数的产生过程,理解分数与小数的联系。
2、使学生明确小数的计数单位,认识小数并理解小数的意义。
3、培养学生的观察能力、分析能力、抽象概括和迁移能力。
教学重点:使学生通过分数与小数的联系从而理解小数的意义。
教学难点:理解小数的意义。
教具准备:多媒体课件、米尺。
教学过程:
一、设疑激趣、揭示课题。
教师出示钢笔,写出价格13.50元。
师:这是个什么数?(学生:小数)
师:小数和我们学过的整数有什么不同?
生:有圆点……
师:小数是仿照整数写成的,用小数点隔开,左面是小数的整数部分,右面是小数部分。在日常生活中,有很多地方要用到小数。(教师和学生比身高并引出姚明的身高。)
第一组数:1米7分米3厘米2米2分米6厘米
第二组数:1.73米2.26米
师:那一组数更简明?(学生:第二组数)
师:对。小数是人们根据生活的需要而产生的。小数里有很多的奥秘,今天,我们就一起来研究小数的.意义。
二、探究新知
1、认识一位小数。
教师出示媒体。
师:把1米平均分成10份,每份是多少?生:1分米1米=10分米
师:那么反过来,1分米等于多少米呢?(生:米)师:
师:还可以把米写成小数是0.1米。
师:0.1米是由哪个分数得来的?(生:是由米得来的。)
师:3分米是多少米?写成小数有是多少呢?(学生:米0.3米。)
师:请同学们观察这一组数,你发现什么?
教师引导:小数点后面有几位数?0.1、0.3分别是由那两个分数得来的?这两个分数的分母是多少?它们的计数单位是多少?
学生:一位小数、分母是10的分数可以写成一位小数、计数单位是十分之一。
师:0.7表示()个。
2、认识两位小数。
师:把1米平均分成100份,每份是多少?你能运用学习一位小数的方法、结合媒体上的资料自己研究出新的小数吗?
分数小数分数小数
出示课件:1厘米=()米=()米15厘米=()米=()米
学生自主研究,教师参与到学生的研究中。
学生汇报研究的成果:
首先填好空。
师:你发现了什么?
学生:这是二位小数、计数单位是百分之一、分母是100的分数可以写成二位小数……
教师对学生没发现的给予引导启发。
师:0.75表示()个。
3、认识三位小数。
师;你能继续研究出其他的小数吗?
教师出示媒体:
把1米平均分成1000份,每份是1毫米。
分数小数分数小数
1毫米=()米=()米63毫米=()米=()米
学生自主研究后汇报交流:
分母是1000的分数可以写成三位小数,计数单位是千分之一………
教师对学生每发现的给予引导启发。
师:0.63表示()个。
4、抽象概括小数的意义。
讨论:1、小数是由分母是多少的分数写成的?
2、一位小数可以用来表示什么?二位小数、三位小数呢?
3、什么叫小数?
学生先自己说,教师再指明学生说。
教师通过讨论第1、2两个问题引导学生归纳出:分母是10、100、1000……的分数可以仿照整数是写法,写在小数点的右面,用来表示十分之一、百分之一、千分之一……的数,叫做小数。
教学例1:
课件出示。学生独立完成后汇报交流。
师:这个题你是怎样想的?
三、实践应用。
课件分别出示。
1、0.5里有()个0.1,
0.09里有()个0.01,
0.013里有()个0.001。
2、教师出示图,学生在书上完成后集体交流。
3、连线,教师出示连线图,学生在书上独立完成后集体交流。
四、应用拓展。
0.425里有()个0.001
0.20里有()个0.01
用0、2、5、8这四个数和小数点你能组成什么样的小数?
五、板书设计
小数的意义教案9
教学目标
1.使学生理解.
2.初步学会较容易的除法是整数的小数除法的计算方法.
教学重点
使学生学会除数是整数的小数除法的计算方法.
教学难点
理解商的小数点要和被除数的小数点对齐的道理.
教学过程
一、铺垫孕伏
(一)列式计算:一筒奶粉500克,3筒奶粉多少克?
教师板书:500×3=1500(克)
(二)变式:
1.3筒奶粉1500克,一筒奶粉多少克?
2.一筒奶粉500克,几筒奶粉1500克?
教师板书:1500÷3=500(克)
1500÷500=3(筒)
(三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.
二、探究新知
(一)理解.
1.课件演示:
2.小结:与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.
3.练习:根据,写出下面两个除法算式的商.
1。8×0。5=0。9
0。9÷0。5= 0。9÷1。8=
(二)教学小数除法的计算方法.
例1.服装小组用21。45米布做了15件短袖衫,平均每件用布多少米?
1.理解题意,并列式:21。45÷15
2.小组讨论,理解算理,尝试计算.
3.课件演示:除数是整数的小数除法(例1)
4.练习:68。8÷4 85。44÷16
5.总结计算法则:除数是整数的小数除法,按照整数除法的.法则去除,商的小数点要和被除数的小数点对齐.
三、全课小结
这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?
四、课堂练习
(一)计算下面各题.
42。84÷7 67。5÷15 289。8÷18
(二)只列式不计算.
1.两数的积是201。6,一个因数是72,另一个因数是多少?
2.把86。4平均分成24份,每份是多少?
3.64。6是17的多少倍?
(三)判断下面各题是否正确.
五、布置作业
(一)计算下面各题.
101。7÷9 79。2÷6 716。8÷7
(二)一台拖拉机5小时耕5。55公顷地,平均每小时耕地多少公顷?
六、板书设计
例1.服装小组用21。45米布做了15件短袖衫,平均每件用布多少米?
小数的意义教案10
设计说明
针对本节课的教学内容和知识特点,在教学设计上突出了以下几点:
1.注重铺垫,以旧引新。
本节课通过对整数数位顺序表的回顾,引导学生运用迁移、类比的方法学习小数数位顺序表,体会知识的内在联系。
2.自主构建,交流补充。
教材为学生呈现了小数数位顺序表,数位和计数单位一一对应。教学设计引导学生认真观察数位顺序表,并且同具体的小数相结合,自主建模,通过交流使学生掌握小数的数位顺序和计数单位,明确小数的相邻两个计数单位间的进率是10,为学习小数的加法和减法奠定基础。
3.借助生活经验理解小数的性质。
借助教材7页“试一试”的情境引导学生进行观察、讨论,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,小数的大小是否改变?鼓励学生大胆猜想,利用生活经验进行判断,并用多种方法进行验证,引导学生主动探究,培养学生发现问题、分析问题和解决问题的能力。
课前准备
教师准备 PPT课件 计数器
学生准备 数位顺序表
教学过程
第1课时 小数的意义(三)(1)
⊙复习导入
1.整数的数位顺序是什么?(个位、十位、百位、千位……)整数的计数单位依次是什么?[一(个)、十、百、千……]相邻的`两个计数单位间的进率是多少?(相邻的两个计数单位间的进率是10)
2.说出下面各数中的“6”表示的意义。
236 6097 65 36000 486020
3.小数和整数一样,也有计数单位,也按照一定的顺序排列,各数位上的数表示的意义也不相同。这节课我们就来研究一下小数的数位顺序。
设计意图:通过复习整数数位顺序表及各数位上的数所表示的意义,唤起学生对已有知识的回顾,同时也为新知识的学习做好铺垫。
⊙探究新知
1.观察情境图,交流信息,提出问题。
(1)观察情境图,交流信息。
师:同学们,你们坐过地铁吗?你们知道地铁的最高运行速度是多少吗?(课件出示教材6页例题情境图)
师:说一说你从画面上获取了哪些信息。
预设 生1:通过观察画面,我知道了北京地铁10号线列车的最高运行速度是80千米/时。
生2:通过观察画面,我知道了北京地铁10号线列车的最高运行速度约为22.222米/秒。
(2)提出问题。
师:22.222各数位上的数都是2,你知道其中的“2”分别表示多少吗?
2.认识小数部分的数位,理解各数位上的数的意义。
(1)观察计数器,认识小数数位。
师:(出示计数器)计数器上有一个小数点,小数点右面第一位是十分位,第二位是百分位,第三位是千分位……
(2)借助计数器说一说22.222各数位上的数分别表示的意义。
①在计数器上拨出22.222。
②讨论交流各数位上的数的意义。
师:十分位上的“2”表示多少?
引导学生看下面的直观图,明确十分位上的“2”表示2个,也可以表示2个0.1.然后完成填空。
③回顾:十位和个位上的“2”分别表示多少?
小数的意义教案11
教学内容:
P32-33
教学目标:
1、在升生活情境中了解小数的产生,体会数学与生活的联系,了解数学的价值,增强对数学的理解和应用数学的信心。
2、探究小数与分数、整数的内在联系,理解小数的意义。
3、通过分析、对比、概括、小结培养学生的思维能力。
教学重难点:
在学生初步认识一位小数、两位小数的基础上,进一步把认识范围扩展到三位小数,分母是10,100,1000的的分数,写成小数是几个0.1,几个0.01,几个0.001,并了解小数的计数单位及单位间的进率。
教学准备:
PPT,小软尺,习题纸。
教学过程
一、谈话引入新课,激发学习兴趣
师:同学们,老师给大家准备了一些关于小数和分数的小书签,我想把它们送给上课积极发言的孩子,想得到它吗?想得到就积极发言吧。
二、创设情境,导入新课
1、同学们在前面的学习中,我们已经初步的认识了小数和分数,这节课,老师想让大家用小数表示自己所测量的物体,请大家拿出大家准备好的软尺,请第1组的同学测量课桌的长度;请第2,3组的同学测量笔袋的长度;请第4,5组的同学测量数学书的厚度,请将你的测量结果记录在老师发给你的纸里。
2、每生测量活动。
3、每组派代表汇报测量结果。
学生汇报预测:
学生1:我测量的课桌的长度是0.6米。
学生2:我测量的笔袋的长度是0.11米。
学生3:我测量的数学书的厚度是0.01米。
4、展示学生的汇报结果,有质疑的请举手。
5、根据同学们的测量结果你有什么发现?(都是小数)
6、在平常的生活中你还见过哪些这样的小数?请举例说明。
生例举一些常见的小数,师补充一些常见的小数。观察这些数你有什么发现?
根据学生的回答,师小结:在进行测量和计算时往往不能正好得到整数,这时候通常用小数来表示。
这节课我们就来学习《小数的意义》。
二、尝试探究,理解意义
1、认识一位小数
教师:出示一米长的.纸条,把它平均分成10份,取其中的一份是多少分米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1分米,分数表示:米,用小数表示:0.1米。
师:取其中的3份呢?取其中的6份呢?生独立思考。
生汇报:取其中的3份是3分米,分数表示:米,用小数表示:0.3米。
取其中的6份是6分米,分数表示:米,用小数表示:0.6米。
2、认识两位小数
我们都知道了一位小数表示十分之几,那么老师现在把这一米长的纸条平均分成100份,取其中的一份是多少厘米?写成分数是多少米?写成小数的多少米?说出你的想法。
师小结:取其中一份1厘米,分数表示:米,用小数表示:0.01米。
师:取其中的40份呢?取其中的75份呢?生独立思考。
生汇报:
取其中的40份是40厘米,分数表示:米,用小数表示:0.40米。
取其中的75份是75厘米,分数表示:米,用小数表示:0.75米。
3、认识三位小数
我们都知道了一位小数表示十分之几,两位小数表示一百分之一,那么老师现在把这一米长的纸条平均分成1000份,取其中的一份是多少毫米?写成分数是多少米?写成小数的多少米?说出你的想法。
生汇报:取其中一份1毫米,分数表示:米,用小数表示:0.001米。
师:取其中的59份呢?取其中的125份呢?
生汇报:
取其中的59份是59毫米,分数表示:米,用小数表示:0.059米。
取其中的125份是125毫米,分数表示:米,用小数表示:0.125米。
4、对比直观描述,小数的意义
师:结合我们刚刚学过的一位小数、两位小数、三位小数完成表格
生独立思考,汇报研究结果,根据学生的回答进行板书。
通过研究,你有什么发现?
学生1:我发现,分母是10的可以写成一位小数,用分数表示是十分之几,用小数表示几个0.1.
师:这位同学总结的非常好,还有谁想来说一说?
学生2:我发现,分母是100可以写成两位小数,,用分数表示是百分之几,用小数表示几个0.01.
学生3:我发现,分母是1000的可以写成三位小数,用分数表示是千分之几,用小数表示几个0.001
师:同学们说的都非常的好,那小数点在这里表示什么意思?(表示想这样的小数和分数还有很多很多,等我们以后再学习)
5、小数之间的进率
1毫米→1厘米→1分米→1米,它们之间的进率发生什么变化?
0.001米→0.01米→0.1米→1米,它们之间的进率发生了什么变化?
师:在小数中,每相邻两个计数单位之间的进率是10.
三、课堂练习,巩固深化
1、把分数化小数(生独立完成,再汇报)。
2、填一填。
3、书本33页做一做。
4、找朋友(将老师发的小书签,根据书签上的小数或分数说出你的朋友小数或分数是几,请起立,展示给全班是不是朋友)。
5、生活中的数学,让数学贴近生活。
四、能力提高,聪明屋
用5,4,0,1,3这五张卡片摆出不同的数。
1、小于1且小数部分是三位的小数。
2、小于1且最大的三位小数。
3、小于1且最小的三位小数。
五、全课小结,今天你有什么收获?
板书设计
教学后记
本课结合具体的情境,进一步体会小数的意义及其与生活的广泛联系。在创设情境中,我尽量让学生多说说自己在生活中看到过的小数。如测量自己身边物体的长度,自己的身高、体重、物体的大小或长度等。让学生感受到小数实际在生活的应用是非常广的,因此我们有学习小数的必要性和重要性。
在掌握简单的小数和分数的基础上,体会十进分数与小数的关系并能进行转化,明确小数的计数单位,理解并掌握小数的意义。小数是十进分数的另一种表示形式,十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。从一位小数入手,让学生经历具体分析一位小数的意义的过程,为后面理解二位、三位小数的意义作铺垫,在此基础上再实现对小数的整体意义的概括,降低了教学难度。
小数的意义教案12
一、教学内容
二、教学目标
1、使学生理解小数的意义,认识小数的计数单位,会读、写小数,会比较小数的大小。
2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。
3、使学生会进行小数和十进复名数的相互改写。
4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。
三、总体感觉
1、整个单元的编排体系、教学重难点与以往教材相通。
这一单元大家都非常熟悉,这是一个传统的教学内容,教学内容跟原来的基本一致。
小数的概念比较难理解,计算起来也比较复杂。为了便于学生理解和掌握小数,本套实验教材仍然采用了以往教材的编排体系,把小数划分为两个阶段教学。第一段安排在三年级下册,在学生初步认识分数的基础上认识两位小数,学习一些简单的小数加减法。第二段安排在四年级下册,在初步认识分数和小数的基础上,让学生开始系统学习小数。
2、简化了对小数的意义的叙述。
小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。省编教材里用了一大段文字来描述小数的意义。但考虑到学生的接受能力,实验教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确:分母是10,100,1000等等的分数可以用小数表示。淡化了十进分数为什么可以依照整数的写法用小数来表示的道理。
3、加强与实际生活的联系。
为了让学生深刻体会小数在实际生活中的广泛应用,教材单设一小节“生活中的小数”,将生活中的小数、单名数与复名数的互化合并在一起进行教学。并且注意从解决问题的角度来介绍单名数与复名数的互化,使学生体会到单名数与复名数的互化是解决实际问题的需要。
三、教学实践与反思
1、重视基本概念、基础知识的理解和掌握。
(1)牢记小数数位顺序表,可以为学生系统学习小数意义,读写,大小比较,位置移动提供基础。
(2)正确区分“数位和计数单位”,P51我们认为计数单位和进率的教学放在这儿不太合适,如果调整到P52结合数位顺序表一起教学可能会更加顺一点。
(3)要重视对知识的概括性语言,比如小数大小比较的方法,小数的读写等。这些知识原来初步认识时虽然接触过,但那时候还没有从更深层次的角度来认识,这里除了让学生进一步认识外,还要对知识进行总结,另外还有基本概念、基础知识的总结,这个单元的概念、法则、性质比较多,并且非常重要。比如小数的基本性质,它是小数计算的基础,小数点的移动规律是小数乘除法的重要依据,也是名数改写的重要基础。
小数点移动引起小数变化的规律在表述上与老教材相比,语言更加严密,改变了“小数点位置移动引起小数大小变化规律”中“扩大......倍”“缩小......倍”的说法。针对长期以来一直存有争议的“扩大几倍就是乘几,缩小几倍就是除以几。”的规定,(有人认为把A扩大N倍,结果应该是A+NA,还有人提出“倍”不能用于缩小等等),实验教材进行了尝试性的改变。在“小数点位置移动引起小数大小变化规律”中,将“扩大......倍”“缩小......倍”叙述为“扩大到......倍”“缩小到......分之一”希望通过实验教学的探索找到解决此问题的有效方法。但学生似乎对“缩小到原数的1/10、1/100、1/1000”不能真正理解,反而对“缩小了10倍、100倍1000倍”更易理解和口述。我们采用的方法是:老师教学时用书中的表述方法,具体则允许学生两种都行。
2、重视“单名数与复名数改写”的教学
教参中提到:将生活中的小数、单名数与复名数的互化合并在一起进行教学。并且注意从解决问题的角度来介绍单名数与复名数的互化,使学生体会到单名数与复名数的互化是解决实际问题的需要。但教材在课时、练习等方面的安排显然是不足的.。而且教材里关于单名数复名数的改写,不是以例题的形式出现,而是用“想一想”的形式出现的。
在以后的练习中只出现了4次,分别是书70页3书71页7书77页12书79页4都是高级单位的单名数与低级单位的复名数之间的改写。我们认为应该在教学中和学生一起提炼出改写的基本方法。同时应以例题的形式出现,并在练习的题型和量上予以保证。
3、关于求一个小数的近似数。
(1)引导学生理解题意
如求0.975的近似数时,保留两位小数、精确到百分位、精确到0.01省略百分位后面的尾数,这几种表达意思都是相同的。
(2)引导学生能正确处理求近似数过程中产生的“0”。
能正确区分什么时候要“添0”、什么时候要“留0”,什么时候要去“0”。
小数的意义教案13
设计说明
《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:
1.在分类中感知小数。
分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。
2.在数形结合中自主探究小数。
《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。
3.找准起点,促进知识的迁移。
小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。
课前准备
教师准备 多媒体课件
学生准备 米尺
教学过程
⊙在分类中感知小数
1.在分类中感知小数。
师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)
老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的`过程中理解一位小数、两位小数……)
2.导入新课。
师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)
设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。
⊙探究新知
1.了解小数的产生。
(1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)
(2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?
(学生可能感到很困惑,有的学生可能会想到用分数表示)
(3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。
2.教学小数的意义。
(1)认识一位小数。
①课件出示米尺图。
把1米平均分成10份,指一指每一份所对应的位置。
②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)
③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)
④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米
0.7米)
⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)
预设
生1:我发现分母是10的分数,可以写成一位小数的形式。
生2:我发现一位小数表示的是十分之几。
⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
(2)认识两位小数。
①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]
②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)
(3)认识三位小数。
师:把1米平均分成1000份,每份长多少?
小数的意义教案14
教学目标:
通过复习,使学生进一步理解小数意义,掌握小数的性质和小数点位置移引起小数大小变化的规律,能比较小数的大小和化简小数。
教学重、难点:
进一步理解小数的意义,能利用小数点移动位置引起小数大小变化的规律进行计算。
教学过程:
教学过程:
一、复习引入
1、提问:(1)小数的性质是什么?
(2)怎样比较小数的'大小?
(3)小数点位置移动引起小数大小变化的规律是什么?
(4)怎样把高级单位的名数改写成低级单位的名数?
怎样把低级单位的名数改写成高级单位的名数?
2、今天我们来复习这些内容。
二、复习过程
1、看下面图先用分数表示,再用小数表示。
分数小数分数小数
2、在()里添上适当的数。
00.10.20.30.40.5
3、回答问题
(1)1里面有几个0.1?
(2)1里面有几个0.01?
(3)0.01里面有几个0.001?
(4)0.3里面有多少个0.1?多少个0.01?多少个0.001
4、下面哪些零可以去掉,哪些不可?
2.12010.8009.010107000
4.0510.0804000.000.7000
4、直接写出下列各题的得数,比一比看谁做的又对又快。P151(4)
5、写出大于0.04小于0.1的两位小数,最多能写几个?
(无数个)
6、在○里添=、〉或〈
0.54○0.5041.23○1.32
0.80○0.80.01○0.008
0.05○0.500.03○0.0297
7、几个同学的跳远成绩是:朱占强3.16米,李立3.2米,罗明2.93米,张勇3.09米,把他们的成绩按名次排列。
8、综合练习
小数的意义教案15
[教材分析]
这节课是学生在三年级学习了“小数的初步认识”的基础上的继续学习和深入理解。学生在日常生活中感受到小数的大量应用,同时在三年级的学习中,对于小数的读法,小数在价格上表达的具体含义都已有所了解。因此,通过本节课的学习,要使学生对于小数产生的实际价值有所认识,抓住数与数之间的紧密联系,了解小数的来源,掌握小数的意义,能正确地把分母是10、100、1000……的分数改写成小数的形式。同时,通过与整数、分数知识的紧密结合,使学生体会到小数的计数单位和进率,从而对于数有一个比较全面的认识,为后续学习做好准备。
[教学内容]
义务教育课程标准实验教科书《数学》人教版四年级下册50页、51页例1。
[教学目标]
1.使学生经历实际测量等活动,了解小数的产生过程。
2.通过实际情境感悟分数可以用小数来表示,理解小数的意义,认识小数的计数单位和进率。
3.在探讨中培养学生学习数学的兴趣和分析能力、表达能力及逻辑推理能力,并结合小数产生的历史,进行爱国注意教育。
[教学重点、难点]
理解小数的意义
[课前准备]
课件,课前调查的数据资料
[教学过程]
(一)创设情境
1.感受生活中整数和分数的运用。
(1)课件出示。
一张桌子、六把椅子、一个圆形花坛、白色占整个圆形的八分之一
(2)师:看来在我们的生活中,整数的应用是非常普遍和广泛的。当我们
得不到正好的整数结果时,可以用分数来表示。
2.感受生活中小数的运用,质疑反思,体会小数的产生。
(1)学生介绍课前搜集到的数据信息
(2)师:小数在生活中的应用也非常广泛,看到这些,你们有什么疑问吗?
(3)抓住现实信息引发思考
提问:生活中,我们在哪些时候会常常用到小数?
让学生自己动手测量桌子的长度或数学书封面的长和宽
3.揭示课题:
看来小数的存在也有它一定的`价值,这节课我们就来研究小数的产生及意义。
(设计意图:在生活中,整数的应用非常广泛,但我们在测量时,往往又得不到整数的结果,可以应用分数来解决。生活中小数的广泛存在又给学生造成认知上的冲突,从而引发学生的疑问,引起探讨。)
(二)研究改写方法,探究小数的意义
1.1米
初步探究一位小数的改写。
(1)出示线段图。
(2)提问:看到上面的图,谁能用分数或小数表示出其中的一份?
①(学生预设:把1米平均分成10份,每份是米。)
②也可以用小数来表示,每一份是0.1米。
③其中的两份用小数可以怎样表示,你怎么想?
(学生预设:把1米平均分成10份,每两份是米,小数是0.2米)
④图中还有哪部分表示0.1?(请学生指图)
(3)理解0.2并感知0.1与0.2有什么关系
①哪部分表示0.2?想一想对0.2你还能说些什么?
②0.2与0.1有什么关系?
(0.1+0.1=0.2,0.2是两个0.1…)
③对于其中的三份、四份、五份…你有什么想法?选择其中的一个和同学说一说。
④对比:米与0.1米,米与0.2米…有怎样的关系?
⑤观察米=0.1米,米=0.2米,…你发现了什么?
⑥提问:一位小数表示什么?
2.在迁移辨析中理解两位小数的改写。
(1)出示教材中的图:如果把1米平均分成100份,其中的1份用分数怎样表示?用小数怎样表示?
(2)提出要求:100份中的1份大家会改写成小数形式了,那么把其中的几份改写成小数的形式呢?小组合作,涂上阴影,说出分数和小数,并说说小数表示的意义。
(根据学生的回答板书例如:米=0.01米,米=0.03米,米=0.12米)
师:同学们你们观察上面这些算式,你们有什么发现?
(学情预设:分母是100的分数可以写成两位小数。也可以说两位小数表示百分之几)
(3)练习:说出小数的意义
课件呈现:0.6、0.09、0.12、0.86、0.1
(设计意图:让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。)
3.深入、灵活理解三位小数的改写
(1)师:如果把1米平均分成1000份,你会把其中的一份或几份改写成小数吗?
(2)根据前面小数的意义,分母是1000的分数可以改写成几位小数?
(3)课件出示三组数据。
第一组:1/100023/100026/1000
第二组:3/100043/100089/1000
第三组:9/100065/10008/1000
(4)提出要求:请小组合作自选一组分数,一边改写一边讨论。
4.:我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。把分数改写成小数的形式,使人们应用起来更加方便、简单。
5.拓展:请同学们想一想四位小数表示多少?五位小数呢?
(设计意图:由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示…到通过联想认识四位小数,五位小数表示的意义,再到抽象概括小数的意义,学生经历了知识的形成过程,让学生在获取数学知识的同时,获得学习的方法,发展提高能力。)
(四)认识小数的计数单位和进率。
1.回顾整数的计数单位
师:回忆一下,我们都已经学习了哪些计数单位?
(个、十、百、千、万、十万、百万、千万、亿)
2.说说它们之间有什么关系?
3.1个一是10个(),是100个(),是1000个(),是10000个()…
4.提问:所以小数的计数单位应该是什么?
5.教师:这十分之一,百分之一,千分之一,万分之一…就是我们今天研究的分母是10的分数写成小数,小数部分是多少表示的就是多少个十分之一,分母是100的分数写成小数,小数部分是多少表示的就是多少个百分之一…,所以,十分之一、百分之一、千分之一…就是小数的计数单位,它与整数计数单位一起形成了数学的一个完整的知识体系。
6.依照这一体系,你能说说小数的计数单位间的进率吗?
(五)巩固练习
1.填数(数学书第51页“做一做”)
2.比一比(数学书第55页练习九第1题)
3.对口令游戏:一方说分母是10、100、1000…的分数,另一方说出对应的小数;一方说小数,另一方说出对应的分数。
(六)畅谈收获
通过这节课的学习,你有哪些收获?还想了解什么?
(设计意图:学生自己所学内容,培养了学生的概括能力和语言表达能力。)
[板书设计]
小数的产生和意义
1分米=1/10米=0.1米1厘米=1/100米=0.01米1毫米=1/1000米=0.001米
2分米=2/10米=0.2米3厘米=3/100米=0.03米127毫米=127/1000米=0.127米
3分米=3/10米=0.3米12厘米=12/100米0.12米74毫米=74/1000米=0.074米
一位小数表示十分之几二位小数表示百分之几三位小数表示千分之几
小数的计数单位:十分之几,百分之几,千分之几…,分别0.1、0.01、0.001……
每相邻两个计数单位之间的进率为10。
【小数的意义教案】相关文章:
《小数的意义》教案09-06
苏教版《小数的意义》教案05-31
《小数的意义》的优秀教案05-06
《小数的意义》教案范文06-21
小数的意义教案(15篇)12-24
小数的意义教案 15篇12-13
小数的意义教案精选15篇02-17
小数的意义教案(合集15篇)03-16
小数的意义教案通用15篇02-15
小数的意义教案(汇编15篇)01-24