小数的意义教案(15篇)
作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编为大家收集的小数的意义教案,希望对大家有所帮助。
小数的意义教案1
教学目标:
1、将十进制低级单位的数改写成高级单位的数,进一步体会小数的意义。
2、会用小数表示一个物体的长度和质量等。
教学重点:
通过实际操作,体会小数与十进分数的关系,理解小数的意义,知道小数部分各数位名称及意义。
教学难点:
会小数与十进分数的关系,理解小数的意义,
教法学法:
主动探究法、实验操作法,讲练结合法。小组合作交流法
教学准备:
学生、老师准备尺子。小黑板
教学过程:
一、检查预习
1、你能说一说小数的读法和写法吗?
2、把下面的数改写成对应的小数或分数。
二、展示交流。
1、提出自己的疑问供小组成员讨论。
2、每组根据任务大小派出若干名同学展示学案的活动一至活动六的`内容,同学认真听,认真评,并提出置疑。
3、教师精讲。
三、探究新知
1、说一说课本第6页上得每一个2分别表示什么?
2、小数点后面的每一位都表示什么?
3、自学提示。学生自学后独立完成括号内的题目。
4、精讲例题。
四、课堂总结
今天你有什么收获?
五、当堂训练。
1、填空。
4分米=( )米
52厘米=( )米
450克=( )千克
69克=( )千克
5元6角7分=( )元
1米5分米 =( )米
2、(1)0.4的计数单位是( ),它有( )个这样的单位。
(2)0.36的计数单位是( ),它有( )个这样的单位。
(3)0.1米表示把1米平均分成( )份,有这样的( )份。0.4米里有( )个0.1米。
(4)0.5元表示把1元平均分成( )份,有这样的( )份。
六、作业布置。
板书设计:
小数的意义(四)
小数的意义教案2
【教学内容】
人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。
【教学目标】
1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。
2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。
3、培养学生探究发现、类推迁移的数学学习能力。
【教学重点】
在学生初步认识分数和小数的基础上,进一步理解小数的意义。
【教学难点】
理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。
【教学准备】
米尺、多媒体课件、立方体教具。
【教学过程】
一、【课前铺垫、创设情景】
教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。
二、【新课讲授】
1、认识一位小数
今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!
(出示米尺课件)学生仔细观察,回答问题。
教学例1。
教师提问:一起来数数,把1米平均分成了多少份?
学生一起数,得出结论(10份)。
提问:因为1米=10分米,所以这一份是多长?
学生观察后回答:1分米
小结:我们把1米平均分成了10份,每一份是1分米。
提问:1分米是1米的几分之几?()
(1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)
教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)
想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)
由此得出:米=0.1米
(2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)
提问:谁能说说0.3米表示什么意思?
同样,可以得出:米=0.3米
(3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)
提问:谁能再来解释一下0.7米表示什么意思?
同理,可以写成:米=0.7米
(4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)
教师旨在引导,学生观察发现
师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)
师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)
师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?
学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!
出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)
一起数数0.3米是由几个米组成的?(3个)
提问:那0.3里面有()个0.1?
这一段又是多长?(0.7米)
再来数数几个米组成0.7米?(7个)
提问:那0.7里面有()个0.1?
进一步强化训练:0.9里面有()个0.1?(9个)
请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)
提问:1里面有()个?(10个)
也就是说:1里面有10个0.1
提问:谁能告诉我1.2里面有()个0.1?(12个)
师:你是怎么想的?
教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1
师:这句话太重要了,谁能把它再说一遍!
点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)
反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?
2、认识两位小数
小小的米尺,大大的学问。
师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)
1厘米是1米的几分之几米呢?(米)
出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。
小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)
提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?
请大家翻开课本32面,把你的答案写在书上。
教师根据学生的`回答,课件逐一出示答案。
师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)
师:请大家仔细观察,这次写出的都是几位小数?(两位小数)
师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)
师:那你发现了什么?
学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!
师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01
师:谁能把这句非常重要的话像老师这样说一说!
点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)
反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)
3、认识三位小数
师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?
学生分组讨论交流,小组选派代表发言。
发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米
提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?
学生总结发现:
分母是1000的分数,可以用三位小数来表示。
三位小数的计数单位是千分之一,写作:0.001
点击出示发现!你们个个都是自学小能手!老师为你们点赞!
4、概括:小数的意义
师:通过刚才的学习,我们知道了:
分母是10的分数,可以用一位小数来表示
分母是100的分数,可以用两位小数来表示
分母是1000的分数,可以用三位小数来表示
谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)
学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)
师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……
这就是小数的意义,请大家齐读一遍。
学生齐读意义,教师板书课题~小数的意义
师:同学们可真棒!自己总结出了小数的意义!
5、总结:小数的计数单位
师:通过刚才的学习,我们也知道了:
一位小数的计数单位是十分之一,写作:0.1
两位小数的计数单位是百分之一,写作:0.01
三位小数的计数单位是千分之一,写作:0.001
师:谁能尝试着把它们用一句话来总结一下?
学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)
师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。
师:这里的省略号表示什么意思?(说不完)看来同学们理解了!
6、小数相邻单位间的进率
(过渡)学习的过程就是不断地克服困难,战胜自我的过程。
师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?
教师出示正方体变形课件,逐步引导学生观察分析:
1里面()个0.1
0.1里面()个0.01
0.01里面有()个0.001
提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。
学生讨论发言。
小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。
师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?
学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)
请大家齐读一遍。
三、【巩固提升、练习反馈】
1.完成教材第33页“做一做”。(可以一题两问)
2.判断:争当合格小裁判(说出判断理由)
四、【课堂小结】
提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?
小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)
五、拓展延伸
板书设计
小数的意义:分母是10、100、1000……的分数,可以用小数来表示。
小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……
小数的进率:每相邻两个计数单位之间的进率是10。
小数的意义教案3
教学内容:教科书第111—112页的例1和例2,第111页、113页上面“做一做”中的 题目和练习二十六的第1—2题。
教学目的:
1.使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。
2.培养学生的迁移类推的能力。
教学过程:
一、复习
1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克。两个小队一共采集了多少克?让学生先解答,再说一说整数加法的意义和计算法则。
2.笔算。
4.67十2.5= 6.03十8.47= 8.41—0.75=
让学生列竖式计算,指名说一说自己是怎样算的,并注意检查学生竖式的书写格式是否正确。
二、新课
1.教学例l。
(1)通过旧知识引出新课。
教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例l。让学生读题, 理解题意。
(2)引导学生比较整数加法和小数加法的意义。
教师:“例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什 么要用加法算?”
引导学生通过比较说出:从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算;从例1可以看出小数加法的意义和整数加法的意义相同.也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算。
(3)引导学生理解小数点对齐的道理。
教师板书横式以后,让学生说一说怎样写竖式,并提问:“为什么要把小数点对齐?”然 后把以千克作单位的小数改写成以克作单位的整数,列出竖式,并提问:“整数加法应该怎样算?”引导学生说出计算时要把相同数位上的数对齐,再从个位加起。
教师接着再提问:“为什么要把相同数位上的数对齐?”引导学生说出相同计数单位上 的数才能相加。教师告诉学生:小数加法也是相同计数单位上的数才能相加,所以列竖式 时只要把小数点对齐就能使相同数位上的数对齐。
然后让学生计算,算完后教师提问:“得数7.810末尾的‘0’怎样处理?能不能去掉?为什么能去掉?”引导学生说出根据小数的性质可以把末尾的“0”去掉。并告诉学生以后在计 算小数加法遇到小数末尾有“0”时,通常要把“0”去掉。
2.让学生做第111页“做一做”中的题目。
让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。
3.引导学生比较小数加法和整数加法的计算法则。
教师:“小数加法与整数加法在计算上有什么相同的`地方?”启发学生说出小数加法和 整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐:
4.教学例2。
(1)引导学生通过比较得出小数减法的意义。
教师:“例2的条件和问题与例l比有什么变化?例2的数量关系是什么?”启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数.求第二小队采集 的千克数;可以看出小数减法也是已知两个加数的和与其中的一个加数。求另一个加数的运算,所以它的意义与整数减法的意义是相同的。
(2)利用知识迁移使学生理解小数点对齐的算理。
让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐: 然后教师把千克数改写成克数并列出竖式,提问:“个位上是几减几?”接着让学生看小数减法竖式,提问:“被减数干分位上没有数计算时怎么办?”利用小数的性质使学生理解被减数干分位上没有数可以添“0”再减,也可以不写“0”,把这一位看作“0”再计算,以后 在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是 否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。
5.比较小数减法与整数减法的计算法则。
让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数 加法与整数加法在计算上的关系是一样的。
6.小结。
教师:“通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?”
启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法 则,齐读一遍。
7.做第113页最上面“做一做”中的题目。
学生做题之前,教师先提问:“整数加减法各部分间的关系是怎样的?整数加减法是怎样验算的?”从而说明小数加减法各部分间的关系及验算方法与整数加减法的一样。再让学生做题.检查竖式的书写及计算有没有错误,得数的小数点点得是否正确,验算的格式 对不对。订正时,让学生说一说是怎样计算并验算的。
三、巩固练习
做练习二十六的第1—2题。
1.做第l题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:“你是根据什么来写减得的差的?”使学生加深对小数减法的 意义和加减法关系的认识;
2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时, 针对学生易出错的地方重点说一说。
小数的意义教案4
教学目标:
1、通过练习进一步掌握小数加减法的计算方法。
2、通过练习进一步掌握小数加减混合运算的方法和简便计算的方法。
3、通过活动,培养学生自主探索、合作交流的能力,动手操作的能力。培养学生综合运用知识解决现实问题,收集信息、处理信息的能力。
教学重点:
小数加减混合运算的方法和简便计算的'方
教学难点:
小数加减混合运算的方法和简便计算的方
教法学法:
主动探究法、练习法。小组合作交流法
教学准备:
小黑板
教学过程:
一、复习导入新课
1、复习小数的意义。
2、怎样比较小数的大小。
3、怎样进行小数加减的计算。
二、展示交流。
专题训练一:完成课本18页第一题、第二题。
专题训练二:完成课本18页第三题
专题训练三;完成课本18页第四题。
专题训练四:完成课本18页第五题
专题训练五:完成课本18页第六题。
三、课堂小结
四、作业布置
完成相关配套练习。
五、单元测试
(一)小小知识窗看谁本领高!(25分)
1、里面有( )个,里面有( )个。
2、4个百、5个十、3个十分之一,组成的数是( )。
3、的计数单位是( ),它含有( )个这样的计数单位。
4、58厘米=( )米
540克=( )千克
7元8角3分=( )元
9吨40千克=( )吨
5、小数相邻两个单位之间的进率是( )。
6、千克、1000克、吨、1千克10克按从大到小的顺序排列是
( )﹥( )﹥( )﹥( )。
7、在○里填上<、>、=。
○
○
○
米○362厘米
284克○千克
米○532厘米
8、不改变大小,写成三位小数是( )。
9、一个小数,整数部分的最低位是( )位,小数部分的最高位是( )位。
10、□5.□5,使这个数最小是( ),使这个数最大是( )。
(二)火眼金睛辨对错。(10分)
1、与大小相同,计数单位也相同。 ( )
2、小数点的后边添上0或去掉0,小数大小不变。 ( )
3、时=4时40分。 ( )
4、整数加法的运算定律同样适用于小数加法。 ( )
5、和之间只有一个小数。 ( )
(三)选择。 (10分)
1、比10少( )
A、
B、
C、9
2、由2、4、5三个数字组成的最大的两位小数是( )
A、
B、
C、
3、大于小于的小数有( )个
A、9
B、10
C、无数
4、这个数( )位上的零可以去掉。
A、百
B、十
C、百分
5、小红在计算小数减法时,将减数错看成38,得108,那么正确的结果是( )
A、
B、
C、
(四)计算。(32分)
1、口算:(10分)
=
+=
=
+=
+=
+=
=
+11=
=
=
2、列竖式计算:(6分)
+
3、脱式计算,能简算的就简算:(6分)
(+)
+
4、列式计算。(10分)
(1)一个数比与的和多,这个数是多少?
(2)从里减去与的和,差是多少?
(五)解决问题:(18分)
1、五月份某运输公司一队运货吨,二队运货吨,三队比二队多运货吨,三个队五月份共运货多少吨?(4分)
2、妈妈买鞋用去元,买袜子用去元,给了售货员150元,还剩多少元?(用两种方法计算)(6分)
3、光明小学四二班向灾区的小朋友捐款情况如下表
小组: 第一小组、第二小组、第三小组
钱数(元): 、比第一小组少、比第二小组多
(1)第三小组捐款多少元?(2分)
(2)三个小组一共捐款多少元?(3分)
(3)请你提出一个数学问题?并解答。(3分)
(六)智力大比拼(5分)
一桶油连桶重千克,用去一半后连桶重千克,这桶油重多少千克?桶重多少千克?
小数的意义教案5
教学目标:
1、了解小数的产生和理解小数的意义。
2、掌握小数的计数单位及单位间的进率。
教育方面:
1、培养学生的观察、分析能力和抽象概括能力。
2、感受数学与生活的联系及其价值,体验数学学习的乐趣。
教材分析:
1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。
2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。
3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。
4、教学目标:
(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。
(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(3)培养学生的观察、分析、推理能力。
5、教学重点、难点。
教学重点:使学生明确小数的.产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。
教学难点:
小数意义的探究过程和相邻两个计数单位间的进率。
教学准备:
多媒体课件 、测量工具(米尺)。
教学过程:
(一)操作导入:
1、让两名学生测量黑板、课桌长度。(用米作单位)
2、交流测量结果,展开讨论。
3、引导小结:
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)
【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。
(二)引导探究:
1、认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。
③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)
板书:1分米= 米=0.1米.
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、7分米表示什么意思?
2、认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.01米。
③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)
板书:1厘米= 米=0.01米.
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米各表示什么意思?
3、认识三位小数。(出示学生尺)
(1)在尺上找出1毫米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.001米。
③谁来说说0.001米表示什么?
板书:1毫米= 米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思?
照这样分下去,还可以得到万分之一米??也可以写成0.0001米。
象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??
(三)概括:
1、概括小数与分数的关系。
(1)什么样的分数可以用一位、两位、三位??小数来表示?
(2)一位、两位、三位??小数分别表示几分之几?举例说说。
2、概括小数的意义。
师:分母是10、100、1000??的分数可以用小数表示。
【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。
(四)小数的计数单位和进率
(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)
(2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?
(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。
【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。
(五)巩固应用
1、学生看书并完成例1的空白。
2、P51 “做一做”用分数、小数表示涂色部分。
3、闯关练习:
(1)括号里能填几?你是怎么知道的?
0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。
(2)下面的括号里能填几?
0.1米里面有()个0.01米 ;
0.01米里面有()个0.001米 ;
0.001米里面有()个0.0001米。
(3)找朋友:(用线把上下两组数连起来)
0.045 0.13 0.0001 0.9
4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?
0.3 0.18 0.250.036
【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。
(六)课堂总结
这节课我们学习了什么?你知道了什么?你还有什么问题?
【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。
(七)板书设计:
小数的产生和意义
小数的产生:在进行计算和测量时,往往得不到整数的结果。
小数的意义教案6
教学目标:
1、借助计数器,掌握小数的数位。
2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。
3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。
教学重点:
掌握小数的数位和计数单位。
教学难点:
掌握小数的基本性质。
教学准备:
课件、计数器
教学过程:
一、复习旧知,导入新课
过渡:同学们,通过前几节课的学习,我们认识了小数的意义,接下来老师要来考考你们,看你们掌握得怎么样?
(课件出示)
1、填空。
3写成小数是( ) 10
表示()写成小数是() 100
表示( )写成小数是( ) 4表示( )
2、读一读下面一段话中的.小数。
北京地铁10号线列车的最高运行速度是80千米/时,约为米/秒。
师揭题:今天这节课,我们首先要来研究小数“”中每个数字的含义。(板书课题:小数的意义(三))
二、动手操作,探究新知
1、认识数位。
出示计数器,师问:这个计数器有什么特点?
学生观察后汇报
师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“”吗?学生尝试在计数器上拨数,师指名上台演示。
课件出示拨数情况,引导学生认识:
“” 中有5个“2”,这5个“2”所表示的意义是不同的。小数点右边第一1个“2”在十分位上,它表示2个
师提问:小数点右边第2个“2”在百分位上,它表示2个
引导学生思考后回答:11,用小数表示是,所以这个“2”也可以表示,它也可以表示多少? 1001可以写成,所以这个“2”表示2个 100
师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?
学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个 1000
师引导学生再次思考:小数点左边两个2分别表示多少?
学生先独立思考,再小组内交流,最后集体汇报。
2、认识计数单位及计数单位之间的进率。
师引导思考:整数的数位顺序表是个位、十位、百位??,那么小数的数位顺序是怎样的呢?
课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:
小数点右边第一位是十分位,计数单位是十分之一();
小数点右边第二位是百分位,计数单位是百分之一();
小数点右边第三位是千分位,计数单位是千分之一();
小数点右边第四位是万分位,计数单位是万分之一();
课件出示整数的数位顺序表,进行小组讨论:看一看,比一比,在数位顺序表上整数部分与小数部分有何异同?
学生讨论后汇报交流,师生共同总结:
相同点:相邻计数单位间的进率都是10.
不同点:整数部分在小数点的左边,数位顺序是从右往左依次排列,计数单位由小到大,只有最小的计算单位——1,没有最大的计算单位;而小数部分在小数点的右边,从左往右依次排列,计数单位由大到小,没有最小的计数单位,只有最大的计数单位——
师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个元是1元;10个元是元,再次明确小数的计数单位是“满十进1”。
三、巩固运用,拓展提升
1、出示教材第7页“试一试”情境一:同样的毛巾,小熊商店每条5元,小狗每条元,这两个毛巾的价格一样吗?
引导学生讨论后交流汇报。
2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?
让学生自主涂色,并汇报:和一样大。
师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么和一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3、即时练习。
课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?
四、课堂小结
通过这节课的学习,我们学会了哪些知识?
板书设计:
小数的意义教案7
教学内容:
教材32页内容。
教学目标:
1.让学生通过动手操作理解小数的意义。
2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率.
3.培养学生的观察、分析、推理能力.
教学重、难点:
理解小数的意义。
教学准备:
每个学生空白正方形、平均分成了十份的正方形和平均分成了一百份的正方形纸各一张。
教学方法:
引导操作、观察分析、推理归纳。
教学过程:
一、引入课题
1.三年级的.时候我们认识了小数,同学们都记得吧?小数与我的生活息息相关,随处可见,请同学们说说生活中的小数。(课件出示)
师:像这样的小数,还有很多,观察可以分类吗?
小数点后面有一个数字叫一位小数,小数点后面有两个数字叫两位小数,小数点后面有三个数字叫三位小数。
同学们,你们说了这么多,老师说几个,你们愿意吗?
师:板书:0.1 0.01 0.001
这里的0.1、0.01、0.001表示什么意思,他们之间的进率又是多少?引出课题《小数的意义》
二、探究意义
(一)教学0.1
1.如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。请将你心目中的0.1在这张纸上用颜色涂出来。(电脑演示正方形纸、1)
2.(展示、汇报)说说你是怎么表示出0.1的。小结:要想准确地表示出0.1,我们应该先把这个正方形平均分成十份,再涂出其中的一份,就是0.1。还可以用什么数来表示?
3.取出一张平均分成了十份的正方形,准确地表示出0.1。
4.请涂出其中的3份,涂色部分用小数怎样表示?用分数表示是( ),0.3里面有多少个0.1,空白部分呢?(用小数表示,用分数表示)
5.投影:阴影部分用小数怎样表示?有多少个0.1,空白部分呢?
观察得出:一位小数就表示十分之几(板书)
6.想一想,1里面有( )个0.1。
(二)教学0.01
1.回顾一下,刚才我们是怎样得到0.1的?
2.你能在纸上表示出0.01吗?请你在格字图上表示出来(生取出平均分成一百份的正方形纸片)。说说你是怎么表示的?空白的部分呢?(电脑演示过程)
3.请看老师这张图片,你想到了什么小数?
4.看到0.23,你还想到了什么小数。
5.请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?
6.观察得出:两位小数就表示百分之几(板书)
(三)教学0.001
通过0.1,0.01的教学,推理得出0.001的意义。
请你观察前两组的数,你有什么新的发现?(一位小数、十分之几,两位小数、百分之几,得出:三位小数、千分之几等等)。
三、提炼小数意义
1.小结:像这些用来表示十分之几、百分之几、千分之几……的数,我们把它叫做小数。
2.师:其中的一份,如十分之一、百分之一、千分之一,我们把它叫做计数单位,也可以写作0.1、0.01、0.001等等。如0.3的计数单位是0.1,它有3个0.1。0.25的计数单位有( ),它有( )个0.01。
3、电脑出示练习题。
四、小结。
五、布置作业。
小数的意义教案8
【教学内容】
课本第49页例3课堂活动第2题及练习十三。
【教学目标】
1、进一步认识小数及小数的计数单位,让学生会读小数。
2、进一步体会小数在日常生活中的作用。
3、通过对现实生活中一些自然、人文景观的数据的读写,受到爱国主义的'熏陶。
【教学重点】
进一步认识小数及小数的计数单位;会读、写小数。
【教学难点】
小数部分的读法、写法。
【教学过程】
一、复习引入
教师:上节课我们认识了小数,什么叫小数呢?一位小数表示几分之几?两位小数呢?三位小数呢?学生回忆整数读法并在全班交流。
揭示课题:同学们你们会读小数吗?今天我们就来探讨小数的读法。
二、自由讨论、学习新知
1、教师用卡片出示例
0.7,0.19
2、学生先自由读一读,再抽读。
3、议一议:读小数时要注意什么?
4、教师根据学生的回答再归纳小结小数的读法,强调整数部分与小数部分读法的不同。
三、巩固新知
1、同桌相互读数。(课堂活动第2题)
2、练习十三第4题。
让学生独立看题后,再把自己从题中获得的信息告诉同桌或全班同学。
3、练习十三第5题。
教师先引导学生认识表格,并向学生简介表中一些名称的含义。
再让学生看表分组接龙游戏。
4、练习十三第6题学生自己看图写数,三人板演,集体订正。
5、指导练习。
(1)第9题。
教师:5.6与5.7之间相差多少?让学生数一数,5.6与5.7之间平均分成了多少份?从而认识到把0.1平均分成10份,即比0.1更小的计数单位是0.01。因此,第1小题应该填两位小数。
同理,比0.01更小的计数单位是0.001,第2小题应该填三位小数。
填完后,让学生说一说是怎样想的?
(2)第10题。
学生自己独立完成。明白每个小数位上的数代表着什么。
四、拓展提高
1、练习十三第1、2、3、7、8题。
让学生独立完成,集体订正。
2、思考题:第12题用2,5和3个0写小数。
(1)1个0都不读出来的一位小数。
(2)3个0都读出来的小数。
让学生独立思考,完成后读一读。
3、课后作业:第11题和第13题。
回家请父母帮忙,与父母共同完成。
五、课后小结
今天学习了什么?你有哪些收获?
板书设计:
小数的读写
0.7读作:零点七
0.19读作:零点一九
3.08读作:三点零八
103.503读作:一百零三点五零三
读整数部分时按整数读法来读,读小数部分时顺次读出每一个数位上的数字。
教学反思:
小数的意义教案9
学习目标:
1、体会小数所表示的意思,理解小数的意义。
2、理解和掌握小数意义。
教学重点:通过练习,体会小数的意义,知道小数所表示的含义。
教学难点:通过练习,体会小数的意义,知道小数所表示的含义。
教学准备:学生、老师准备计数器、小黑板
教法:小组合作交流法
学法:小组合作学习
教学课时:2课时
学习过程:
一、情景导入,呈现目标
1、你的身高是多少?你会用小数来描述吗?
2、你都在哪里见过小数?说一说,并写出几个你见过的`小数来。
二、探究新知(自学后完成下面问题)
1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。
2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。
3、1、11表示()元()角()分。
三、合作探究,当堂训练
1、用数表示下面各图中得涂色部分?(课本第2页第2题)
2、想一想填一填?(学生独立完成)
3、自己画一方格纸,并画出0、1、0、5、0、6?
4、找一找生活中的小数,小组交流,选代表汇报。
四、精讲点拨(根据学生出现的问题进行精讲。)
五、学习收获,自我总结:
1、小组评价:你认为第几小组表现最棒,为什么?
2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。
课后反思:(略)
小数的意义教案10
教学目标
(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。
(二)通过归纳整理,提高学生的概括能力。
教学重点和难点
熟练掌握小数乘除法的计算法则,提高学生计算的准确率。
教学过程设计
(一)归纳整理小数乘除法的意义
1.口算下面各题,并说出各算式的意义。
15×3 1。5×3 15×0。3 15÷3
28×2 2。8×2 28×0。2 2。8÷2
25×5 2。5×5 2。5×0。5 2。5÷0。5
12×4 1。2×4 0。12×0。4 0。12÷0。4
2.思考:
①小数乘法的意义有几种情况,是按什么划分的?分别是什么?
②小数除法的意义是什么?
讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)
3.比较归纳、整理:
看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?
讨论完成下表:
(二)复习小数乘除法的计算法则
1.小数乘法的.计算法则。
(1)说出下面各题的积中各有几位小数。
23×0。5 21。4×0。7 27。5×12。03 1。84×0。026
提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)
(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?
①0。4×2。5=(1);②0。075×0。52=(0。039)。
提问:
①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)
(3)计算并验算:
67×75= 836×25= 125×24=
订正后回答:
0。67×7。5= 8。36×0。25= 0。125×2。4=
小结:
小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?
讨论得出:
相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。
不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(4)口算:
0。8×4= 4×0。8= 0。05×20= 20×0。05=
0。03×9= 9×0。03= 1。9×5= 5×1。9=
观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)
练习:在下题的○中填上>,<或=。
①1。6×1。2○1。6; ②1。4×0○1。4;
③0。24×5○0。24; ④3。7×2。1○3。7;
⑤0×7○0; ⑥0×2。8○0。
上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)
2.小数除法的计算法则。
(1)计算并验算(P34:6):
1。89÷0。54= 7。1÷0。125= 0。51÷0。22=
计算后订正,提问:
①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)
②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)
(2)口算:
4。2÷0。6= 1。5÷5= 3。2÷0。8= 2÷4=
哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?
(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)
练习:在下面的○中填上>,<或=。
30÷0。6○30 1。8÷9○1。8 0÷0。2○0
3。6÷4○3。6 27÷0。3○27 0÷1。2○0
上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)
(三)综合练习
1.口算:
39。78×1= 3。6÷3。6= 2。87×0=
1×0。56= 7。8÷1= 0÷2。87=
“1”与“0”有什么特性?
2.计算并求近似值:P35:2。
小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)
3.作业:P35:1,3。
课堂教学设计说明
复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。
通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。
板书设计
整数乘法:
4×25=100
75×52=3900
小数乘法:
小数除法:
小数的意义教案11
【教学内容】
【教学目标】
【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。
难点:用“四舍五入”法按要求求出小数近似数。
【教学过程】
一、揭示课题
这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。
二、复习小数的意义
1、做期末复习第8题(1)、(2)、(3)。
(1)学生在书上填写,集体订正。说一说0.5、0.023的意义。
(2)说一说小数的意义是什么?
问:一位小数、两位小数、三位小数……各表示几分之几的数?
2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?
(2)填空。
0.1里面有( )个0.01。 10个0.001是( )。
10个0.1是( )。 0.1里有( )个0.01。
三、复习小数的性质和小数的大小比较
1、练习。
(1)把下面小数化简。
4.700 16.0100 8.7100 14.00
(2)不改变数的大小,把下面的数写成两位小数。
4.2 13.121
①学生做,指名板演,集体订正。
②问:做题时是根据什么来做的?什么是小数的性质?
2、做期末复习第9题,第1竖行两题。
(1)学生在书上做,指名板演,集体订正。
(2)让学生说一说怎样比较两个小数的大小。
3、做期末复习第10题。
(1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。
0.1 0.012 0.102 0.12 0.021
(2)按要求从小到大排列。
四、复习小数点位置移动引起小数大小变化的规律
1、做期末复习第8题(4)、(5)。
(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?
问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?
(2)学生练习,指名回答。
2、练习。
(1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。
(2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。
五、复习求小数的近似数和整数的改写
1、把下面小数精确到百分位。
0.834 2.786 3.895
(1)学生做,指名板演。
(2)让学生说一说怎样求一个小数的近似数。
2、(1)把下面各数改写成“万”作单位的数。
486700521000
(2)把下面各数改写成“亿”作单位的数。
460000000 7189600000
学生在练习本上做,指名板演,说一说怎样把一个较大数改写
成“万”或“亿”作单位的数。
3、把下面各数改写成“万”作单位的数,并保留一位小数。
67100209500
(1)学生在练习本上做,指名板演。
(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?
4、做期末复习第9题剩下的两题。
(1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。
(2)学生练习,集体订正。
(3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的`0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以
了。
5、做期末复习第11题。
学生在书上做,并说明理由。
六、全课总结
这节课复习了什么内容?
怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?
【作业设计】
1、0.45表示( )。
2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。
3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。
4、在○里填“”、“”或“=”。
16.36○16.63 0.36万○3600
0.97○1.01 0.23亿○2100万
5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?
10000千克稻谷可出大米多少千克?
小数的意义教案12
设计说明
本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:
1.注重学生已有的知识经验。
在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释1.11元、1.11米是什么意思,认识到0.1与,0.01与是同一个数的'不同形式,为探究小数的意义奠定了基础。
2.给学生创设自主探究的空间。
本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几……充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几……直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。
课前准备
教师准备 PPT课件 正方形纸
学生准备 正方形纸 水彩笔 直尺
注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。
教学过程
⊙创设情境,导入新课
1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)
2.谈话引入。
同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?
预设 生1:测量身高时,我的身高是1.42米。
生2:跳远比赛时,我的成绩是2.1米。
……
3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。
设计意图:从学生熟悉的商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。
⊙动手操作,自主探究
活动:探究小数的意义。
1.做一做,说一说。
(1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,1.11元和1.11米分别是什么意思?(学生以小组为单位,合作学习)
(2)全班交流:1.11元是1元1角1分,1角是1元的,也可以写成0.1元,1分是1元的,也可以写成0.01元。
1.11米是1米1分米1厘米,1分米是1米的,也可以写成0.1米,1厘米是1米的,也可以写成0.01米。
2.画一画,涂一涂。
(1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。
(学生展示操作成果并汇报)
师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是0.1。0.1表示把“1”平均分成10份,取其中的1份。比较一下“1”和“0.1”的大小,“1”里面有几个“0.1”?
预设 生:1比0.1大,1里面有10个0.1。
(2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?
①学生先独立思考,然后独立完成。
②汇报交流。
小数的意义教案13
教材位置
人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。
教学目的
1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。
2、培养学生的迁移、类推能力。
3、渗透数学“来源于生活,又运用于生活”。
教具准备
多媒体课件。
学具准备
草稿纸若干
教学重点
相同数位对齐
教学难点
小数点对齐
教学方法
探究式学习法
学情分析
学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。
学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。
整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的'要求。
学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。
教学过程
一、复习。
1、谁的竖式最漂亮,计算更准确。
4235+5478 3251+438
7621+37543 4320+317
小组内完成后,讨论下列问题。
1列竖式时要注意什么?怎样列竖式更快捷?
2计算时要注意什么?
2、整数加法的意义是什么?它的计算法则是什么?
二、激趣导入。
1、提问:夏天到了,你最喜欢吃什么水果?
2、听故事,做数学。
明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?
3、抽一生列式板演,全班齐练。
4、继续听,继续算。
后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?
你还会求出他们一共重多少千克吗?
5、揭示课题:
小数加法的意义和计算法则
三、新授。
1、小数加法的意义。
同整数加法一样,都是把两个数合并成一个数的运算。
2、小数加法的计算法则。
刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:
(1)小数与整数比较,有什么特征?
复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。
为小数加法的意义和法则的类推作理论铺垫。
设问起疑,引起学生的兴趣,提高学生的注意力。
体现数学来源于生活,生活中到处存在数学问题。
进一步复习巩固单位换算的知识,为引出课题作准备。
类比推理的运用,训练学生知识迁移能力。
(2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的
目的?
(3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?
3、指导看书P111。
4、试练。
完成P111做一做并回答问题。
四、延伸拓展。
1、你会用两种方法计算吗?
1元8角7分+3角2分
7角6分+3元4角4分
2、听故事,列算式:
小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?
五、巩固训练。
4235+5748 37251+438
4.235+5.748 3.7251+4.38
42.35+5.748 37.251+4.38
4.235+57.48 372.51+4.38
六、板书设计。
小数加法的意义和计算法则
3 7 3 5克 3. 7 3 5千克
+ 4 0 7 5克 + 4. 0 7 5千克
7 8 1 07. 8 1 0千克
7810克=7.81千克 3.735+4.075=7.81(千克)
在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。
初步学会对加法法则的运用。
加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。
训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。
加深对计算法则的理解,能运用法则准确计算。
小数的意义教案14
教学目标
知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。
过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。
情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的`积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。
教学重点:理解小数的意义及每相邻两个单位时间的进率是十。
教学难点:概括和理解小数的意义。
教法:启发引导法
学法:合作交流
教具学具准备:直尺。
教学过程
一、定向导学(5分)
1、判断下面哪些数是整数?
4、12、38、3.01、105、0.007、20xx、100.06。
整数每相邻的两个计数单位之间的进率都是( )。
板书课题
2、揭示目标:
理解小数的意义及每相邻两个单位时间的进率是十。
二、自主学习(10分)
自学内容:课本p32-33上半页
方法:边看书边完成下面的要求。时间:5分钟
要求:
1、把1米平均分成10份,每份是( )米,写成小数是( )米;
把1米平均分成10份,3份是( )米,写成小数是( )米。
2、把1米平均分成100份,每份是( )米,写成小数是( )米;
把1米平均分成100份,15份是( )米,写成小数是( )米。
3、把1米平均分成1000份,每份是( )米,写成小数是( )米;
把1米平均分成1000份,27是()米,写成小数是( )米。
(1--6组的4号发言,1号评价)
三、合作交流:5分钟
1、什么是小数?
2、小数的计数单位是多少?
(7组的4号发言,1号评价)
四、质疑探究(5分)
每相邻两个计数单位之间的进率是多少?
五、小结检测(15分)
1、小结:
谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
2、检测:
a、填空。
(1)0.1是( )分之一,0.7里有( )个0.1。
(2)10个0.1是( ),10个0.01是( )。
(3) 写成小数是( ), 写成小数是( )。
b、判断:
(1)0.40里面有4个0.01。 ( )
(2)35克=0.35千克( )
元=0.7 元 ( )
=0.01 ( )
米 =0.3米 ( )
=0.03 ( )
=0.030 ( )
c、把小数改写成分数。
0.9 0.09 0.0359
3、堂清作业:教材p33页,p36、1.2
板书设计:
小数的意义
十分之一--------- 0.1
百分之一---------0.01
千分之一---------0.001
分母是10、100、1000……的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几……的数叫做小数。
小数的意义教案15
【第一课时】
复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)
复习要求:
1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。
2.使学生掌握用四舍五人法取积、商是小数的近似值。复习重点:进一步提高计算的正确率和熟练程度。
复习过程:
一、基本练习
1.口算。05。381。40。20。156800。58。50。21。250。83。910
3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数
10。395
2。047
0。9292
二、复习指导
1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()
③8。40。4表示()④8。44表示()(2)思考并回答。
①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。
(1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125
①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的.小数位数不够,应怎么办?
②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。
三、课堂练习
1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03
0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95
先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。
2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?
生独立审题,分析数量关系并列式计算。
四、作业
练习九第1、2题
【第二课时】
复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)
复习要求:
1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。
2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。
复习重点:小数的混合运算和简便计算的正确率及熟练程度。
复习过程:
一、基本训练
练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63
10-1。8-2。20。46280。1254。80。20。50。71。42。430
0。30。152根据学生情况限时做在课本上,集体订正。
二、复习指导
1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14
(1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。
2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?
(2)学生独立简算。(指4名学生板演。)(3)集体订正。
三、课堂练习
1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。
2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价
篮球只78。6元
排球3只145。20元
总计金额302。40元
(1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的单价?并选代表发言。(2)学生填写,教师巡视。
(3)集体订正。
四、攻破难题
1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?
分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的`关系,用被除数3。6除以商2。4,得到除数是1。5。
2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?
分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:
(20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业
练习九第6题、思考题。
【小数的意义教案】相关文章:
《小数的意义》教案09-06
小数的意义教案10-20
《小数的意义》教案范文06-21
《小数的意义》的优秀教案05-06
苏教版《小数的意义》教案08-16
小数的意义教案精选15篇11-11
小数的意义教案(汇编15篇)01-24
小数的意义教案通用15篇12-12
小数的意义教案【常用15篇】11-29
小数的意义教案合集15篇09-08