《3的倍数的特征》教案

时间:2024-07-01 08:40:15 教案 我要投稿
  • 相关推荐

《3的倍数的特征》教案

  作为一名教学工作者,可能需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?下面是小编为大家收集的《3的倍数的特征》教案,仅供参考,希望能够帮助到大家。

《3的倍数的特征》教案

《3的倍数的特征》教案1

  知识与技能:

  1、学生会正确判断一个数是否是3的倍数。

  过程与方法:

  2、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  情感态度价值观:

  3、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  1、掌握3的倍数的特征。

  2、能正确判断一个数是否是3的倍数。

  教学过程设计:

  一、复习引新

  1、用5,6,7三个数字组成一个三位数,使这个数是2的倍数?

  说说什么样的数一定是2的倍数,可以摆成5的倍数吗?怎样摆出的数一定是5的倍数呢?

  2、引入:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。(揭示课题:3的倍数的特征)

  二、探索猜想,初步感知

  师:3的倍数有什么特征?

  1、学生进行猜想。

  (1)个位上是3、6、9的数是3的倍数。

  (2)个位上是3、6、9的数不一定是3的倍数,如23、26、29都不是3的倍数。

  (3)学生面对所出现的问题进行猜想,教师可根据学生的猜想进行适当的引导。

  2、可能出现的问题。

  (1)猜测个位上是3、6、9的数是3的倍数。

  (2)个位上能被3整除的数且被3整除。

  3、探索猜想。

  (1)学生用3、4、5三个数字组成是3的倍数的3位数。

  (2)学生如果提出345或354的例子,可板书并多加评论作为后面要学的内容。

  (3)在这个过程中学生可能会提出猜想的结论。即个位上是3、6、9的数是3的倍数。

  4、验证猜想。

  (1)让学生举例子对猜想的结论进行验证。

  (2)在这个环节中,学生有可能也会发现以下情况:

  ①45是3的倍数,但是,个位上的数字是5,不是3、6、9等。

  ②26个位上的数是6,但它不是3的倍数。

  (3)猜想的结论不成立。

  (4)让学生对猜想结论不成立的这个问题提出自己的看法。

  师:对于一个结论是否成立,只举一个正例是不够的,如举一个反例就可以推翻这个结论,这个结论就不能成立。请同学们在今后的学习中要注意。

  三、自主探索,总结3倍数的特征

  1、在质疑中引导学生探究3的倍数的特征。

  师:请在下表中找出3的倍数,并做上记号。那么多的数,我们怎么找呢?我们要聪明地找,从比较小的数开始找。(师出示100以内数表,每小组各一张,在小组活动后,教师组织学生进行交流汇报,并呈现学生圈出3的倍数的百以内的数表,如下图。)

  2、引导观察。

  (1)请同学们观察这个表格,你发现3的倍数有什么特征?把你的发现在小组里说一说。(小组交流后,再组织全班交流。)

  (2)在教学过程中,教师要巡视,认真倾听学生有什么发现,有什么不懂的地方。

  (3)学生可能发现3的倍数个位上的数有1、2、3、4、5、6、7、8、9、0,没有什么特别规律,十位上的数字也没有什么规律。

  3、教师引领。

  (1)斜着观察你发现了什么?

  (2)在学生观察思考的基础上,概括学生的实际情况,提出新的思考问题:观察每个数各个数位上的数与3有什么关系?将每个数的各个数字加起来看一看会怎样?

  (3)试着概括出3的倍数特征。

  4、总结3的倍数的特征。

  一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。

  5 、检验结论。

  (1)我们从10 0以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?

  (2)利用100以内数表来验证。

  (3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……

  (4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。

  四、巩固应用

  1、从3、0、4、5这4个数字中,选出两个数字组成1个两位数,分别满足以下条件:

  (1)是3的倍数。

  (2)同时是2和3的.倍数。

  (3)同时是3和5的倍数。

  (4)同时是2、3和5的倍数。

  2、完成教材19页的“做一做”

  五、课堂小结:

  这节课你有什么收获?

  板书设计:

  3的倍数的特征

  一个数各位上的数的和是3的倍数,这个数就是3的倍数

  教学反思:

  “3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,我用复习2、5的倍数特征,迁移到3的倍数特征上来,巧妙设疑,激发学生的兴趣,为学习新的知识,奠定了良好的基础。在新知探究这一块的教学我让学生大胆猜测,质疑,让学生在“实验——讨论——验证”中,产生认知的冲突。激发学生探索的兴趣,然后再在“想象——探索”的过程中,培养学生从不同角度去研究问题,用不同方法去解决问题。学生通过大量的表象积累,思维产生了飞跃,自然就概括出结论。整个课堂孩子们在充分地体验着、感悟着、发展着。这是我觉得成功的地方。

《3的倍数的特征》教案2

  教学目标

  1、经历探索3的倍数特征的过程,理解其特征,能判断一个数是不是3的倍数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展分析、比较、猜测、验证的能力。

  3、通过归纳、类比猜测等学习数学的活动,体验数学问题的探索性和挑战性,感受数学结论的确定性。

  教学重点

  理解3的倍数的特征

  教学难点

  探索活动中,发现规律,并归纳出3的倍数的特征。

  教学过程

  一、谈话引入,提示课题

  我们已经研究了2,5的倍数的特征,那么3的倍数又会有什么特征呢?(板书课题)

  二、探索交流、获取新知

  1、出示1~100数字表格

  2、找出3的倍数,并做出记号

  3、观察3的倍数,你发现了什么?(生认为没有什么规律,师再引导观察)

  ⑴任意选择几个3的倍数。如42、87、93。

  ⑵板书在黑板上

  ⑶交换个位和十位上的'数字,得到24、78、39。

  ⑷判断这三个数是不是3的倍数

  ⑸想一想:交换数位前后的两个数中什么不变?(给足充分的讨论时间)生得到:交换前后两个数字的和不变。

  ⑹引导提问:3的倍数的特征跟一个数各个数位上数字的和有关系,到底有什么关系呢?

  ⑺分析、猜测。生从这几个数字的和,可以看出它们又刚好是3的倍数(6、15、12)

  ⑻验证、归纳

  ① 让生随意再找几个3的倍数,利用同样方法,将每个数的各个数字加起来进行验证。

  ② 发现规律,进行归纳

  ⑼尝试检验:①出示84、92、102、315。②利用规律进行检验。③小结:这个规律对三位数一样成立。

  三、巩固练习

  第7页的试一试和练一练

  四、板书设计:

  3的倍数的特征

  3的倍数的特征:把一个数各个数位上的数字加起来的和正好是3的倍数。

  五、课后反思:

  略

《3的倍数的特征》教案3

  一、学习目标

  知识目标:知道3的倍数的特征,并且能熟练地判断一个数是否是3的倍数,了解3的倍数特征的算理。

  能力目标:通过观察、猜测、验证等活动,让学生经历3的倍数的特征的探究过程,体会简单枚举归纳法,以培养学生观察、分析及概括问题的能力,进一步发展学生的数感,体会探索数的特征的一些方法。

  情感目标:让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  二、学习重、难点

  重点:理解和掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  难点:探究并理解3的倍数的特征。

  三、数学思想方法

  简单枚举归纳推理

  四、教具学具准备:

  课件、算理讲解视频、学习记录单

  五、教法设计及学法指导

  1、猜想验证 讨论交流

  2、自主探究 体验感悟

  六、教学程序

一、创设情境,激活经验。

  同学们看大屏幕,课件出示3、6、9 、12 、15 、18 ……

  问题1:刚才这些数都是什么数?(他们有什么共同的特点?和3有什么关系?)

  引导概括:都是3的倍数。

  问题3:25是3的倍数吗?怎么判断的?

  引导学生概括:判断一个数是否为3的倍数,只要看能否被3整除。(用这个除以3,看看有没有余数,没有余数就说明是3的倍数,有余数就不是3的倍数)注意:不要重复学生的话!

  师:用除以3去计算的方法判断,是一个有效的办法!那54326时的倍数吗?用除以3计算会非常麻烦,有没有更快速的方法呢?

  揭题:今天我们就来研究有关3的倍数的知识。板书:3的倍数

  二、猜想验证,探究新知。

  (一)组数游戏

  引导语:组数游戏我们已经学过,今天看看能不能玩出新知识?

  师: 用“1、4、5”组成三位数,谁能组的不重复,不遗漏?

  学生例举:541、145 ……

  师:看来大家没有忘记方法,掌握的真扎实!咱们接着玩!

  出示小组合作资料,强调要求

  (1)独立尝试组数,教师巡视,引导学生小组内交流并验证是否为3的倍数。

  (二)交流发现规律。

  1.组成的数都是3的倍数的小组先汇报

  教师总结:你们的这组数字,不管3个数字怎么排列,也不管组成的数的大小,都是3的倍数!和他们组一样的有哪个小组?

  2. 组成的数都不是3的倍数的小组接着汇报

  教师追问:这么多组都组成了3的倍数,你们2个组怎么就组不起来呢?每种可能都尝试了吗?是因为你们水平的问题吗?

  师:看来问题不是出在你们身上,问题可能出在这几个数字上。

  3. 探索规律。

  师:这个6组数字随意组都是3的倍数,这个2组数字怎么组都不是3的倍数,这应该不是偶然的,请你观察这几组数字,思考是否存在什么规律?

  (1)引导学生在小组内交流自己的想法。

  (2)反馈交流

  生边汇报,师边出示课件:能组成3的倍数的6组数字的和分别是:3、6、9、12、12、15,都是3的倍数,而不能组成的两组数字的和分别是5和8,都不是3的倍数。

  学生的发现:3个数字的和是3的倍数,组成的数都是3的倍数,3个数字的和不是3的倍数,组成的数都不是3的倍数,师:真是一个有趣的发现?那四位数的时候怎么说?

  师:那五位数,六位数,七位数呢?谁能用简洁的语言说说这个发现?

  4. 提出猜想。

  师生总结:教师出示“各位上数的和”,强调各位和个位的区别!

  小结:一个数,各位上数的和是3的倍数,那么这个数就是3的倍数。

  同桌互说,抽查学生说

  5. 验证猜想。

  问题1:你觉得我们的猜想一定正确吗?如何来验证我们的猜想?

  学生:举例验证

  追问1:怎么样来举例子比较合理?

  提炼总结:例子的类型齐全(2位数、3位数、4位数……更多位数;大的数,小的数);

  追问2:例子举的完吗?那怎么办?

  师:只要我们举不出反例来,就说明我们的猜想是正确的。介绍反例的含义!

  一个数,各位上数的和是3的倍数,那么这个数不是3的倍数。

  (2)独立验证(教师示范写法)

  师:把你想的数写在例子下面的方格里,写完了吗?写完的请坐正。

  (3)反馈交流验证的例子。

  小组展示(师展示生的的学习纸:有不是3的倍数的,有是3的倍数的',有2位数的、3位数的、4位数的)

  师:下面的同学举的例子都符合这个规律吧?

  生:符合

  师:咱现在就可以说这个规律是正确的了,什么规律来?

  生:3的倍数特征是:一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。(同桌互说)

  小结:今天我们做了一件非常了不起的事,科学发现就是像这样先有猜想,再严谨地验证得到的。

  三、分层练习,内化新知

  2. 分别在方框里填上一个数字,使这个数是3 的倍数。

  5□ 2□4 1□27

  3. 有一个很大的数:33629996646967,请快速地判断是否为3的倍数。对判断的方法你有什么改进的建议吗?

  4.理解规律内在原理

  问题:数学中就是有这么神奇的规律,那你知道其中有什么道理吗?想知道吗?

  师通过课件演示。

  以135为例,小棒图为载体,“135÷3”就是“把135平均分成3份”,一百平均分成3分,余下1根;1个十平均分成3份,余下1根,3个十就会余下3根;个位上还有5根,百位、十位、个位上的数恰好就是各自分完剩下的数,只要把剩下的数加起来,也就是把各个数位上的数加起来,因此只要看各个数位上数字之和是否为3的倍数即可。

  3. 小结。

  数学是讲道理的,看似复杂神奇的规律其实道理并不难,同学们遇到问题还是要多想想“为什么”。

  四、回顾总结,拓展延伸。

  1. 今天你学到了什么?

  2. 你还想探究几的倍数的特征?(想一想今天我们是怎么探究的?赶紧试试吧!)

《3的倍数的特征》教案4

  教学内容:17—18页的内容以及练习3的第1—3题。

  教学过程设计:

一、引入新课

  同学们,我们在前几节课中已经掌握了倍数和因数的特征,像2、3、5这些数,它们的倍数又有哪些特征呢?这节课,我们就一起先来探究2、5的倍数的特征。[板书课题]

  二、学习新课:

  (一)2的倍数的特征。

  1、长江大桥在过节车流量过大时,常会进行交通管制。按车牌单双号分别放行。如果一、三、五、周日则单号车通过,如果二、四、周六则双号车通过。如果你是交警,今天是周几?(周二),你能判断一下,下列哪些车辆违规通行了吗?

  鄂A。Y7134鄂A。31228鄂A。G4087鄂A。23980鄂A。86323

  你怎么这么快就找出来了呢?

  双号的这些数有什么特点?它们和2有什么联系?

  2、找倍数

  在前面,我们已经学习过怎样求2的倍数,谁能够按一定顺序说出一些2的倍数来。

  [师板书:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30……]

  3、观察特征

  请观察这些2的倍数,你发现有什么特征?如果学生有困难,则提示观察:它们个位上的数有什么特点?(个位上是0,2,4,6,8。)

  4、验证发现

  请任意写出两个个位上是0、2、4、6、8的数,用算式进行验证,看看符不符合这个特点?

  5、得出结论

  谁能说一说2的倍数的数的特征?[板书:个位上是0,2,4,6,8的数,都是2的倍数。]

  6、师:自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。奇数、偶数在我们日常生活中习惯上称它们为什么数?(单数、双数。)

  3、练习:(先分小组小说,再全班统一回答。)

  ① P17做一做。

  指名说一说为什么是偶数或奇数。

  ②说出3个不是2的倍数的三位数。

  ③说出15~35以内的偶数。

  ④ 50以内的偶数有多少个?奇数有多少个?

  (二)5的倍数的特征。

  1、刚才我们学习了2的倍数的特征,了解了奇数和偶数的概念。下面你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征呢?

  先请学生自己动手找5的倍数,然后观察、讨论。说一说5的倍数的特征。再举几个多位数验证。最后得出5的倍数的特征。

  [板书:个位上是0或者5的数,都是5的倍数。]

  2、练习:

  ①(投影片)下面哪些数是5的倍数?

  240,345,431,490,545,543,709,725,815,922,986,990。

  ②P18做一做

  问:你是怎么找到哪些数既是2的倍数,又是5的倍数?

  方法一:把2的倍数和5的倍数找出来,再找它们的共有部分。

  方法二:2*5=10,所以既是2的倍数又是5的倍数的数,一定是10的倍数。再在这种些数中找到10的倍数的数。

  学生口答后教师板书:个位是0的数,既是2的倍数,又是5的倍数。

  教师随口说出数,请立即说出这个数是2的倍数还是5的倍数,或者同时是2和5的倍数,并说明判断的依据。

  三、巩固反馈:

  1 、比75小,比50大的奇数有()。

  2 、在1~100的自然数中,2的倍数有()个,5的倍数数有()个。

  3 、个位是()的数同时是2和5的倍数。

  4 、最大的两位偶数是(),最小的三位奇数是()。

  5、用0,7,4,5,9五个数字组成2的倍数;5的倍数;同时是2和5的倍数的数。

  四、全课总结:这节课你学会了什么?有什么收获?

  教学板书:

  2、3的倍数的特征

  个位上是0、2、4、6、8的数都是2的倍数。个位上是0或5的数都是5的倍数。

  自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

  个位上是0的数既是2的倍数,又是5的倍数。

  教学反思:

  今天的教学对教材进行了两处较大改动:一是删改了2的倍数特征主题图;二是删去了用来探索5的倍数表。为什么将教材中这么重要的两大篇幅进行删改了?我有自己的一点思考:

  一、联系生活实际,创设问题情境。

  如今随着影视业迅猛发展,我市电影展厅变多,单间展厅面积变小,已不再分单双号进入,所以这一生活情境学生基本没有体验。其次,即使有这样的电影院,学生也并非必须按单双号入口进入才能找到座位,因为从单号入口进入同样也能坐在双号座位上。根据以上两点原因,我改变问题情境。以近两年来武汉新变化——过桥分单、双号为切入口,邀请学生当交警来导入新课,学生不仅学习积极性高涨,而且也充分体现出数学在生活中的应用。

  二、学会迁移,培养能力。

  2、 5的倍数特征有共同之处,既都要关注个位上的'数字。我在教学2的倍数特征时下功夫较多,由找倍数——观察特征——验证发现——得出结论,每一环节都使学生明确活动目的,找到学习方法。再到5的倍数特征时,何不由扶到放,充分发挥学生的自主能力性呢?因此,我完全放手,给学生以充分的时间和空间,让他们在观察、探索中体验成功的喜悦。

  教材中所提供的1——100的表格并非必不可少,且少了表格下的“个位上是()或()的数,是5的倍数”给学生思维空间更大,对他们的抽象概括能力要求更高,因此全部删掉。

  教学目标:

  1、通过自主探索,掌握2 、 5倍数的特征,会判断一个数是不是2或者5的倍数。

  2、理解并掌握奇数和偶数的概念,会判断一个数是偶数还是奇数。

  3、经历探索2和5倍数的特征的过程,体现观察探究、归纳总结的学习方法。

  4、在学习活动中,感受数学知识的奥妙,体验发现知识的乐趣,激发学习数学知识的兴趣,培养热爱数学的良好情绪。

  教学重点和难点:

  1、掌握2 、5倍数的数的特征。

  2、奇数和偶数的概念。

《3的倍数的特征》教案5

  教学目标:

  1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。

  2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。

  教学重点:使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。

  教学难点:探索3的倍数的特征。

  教学准备:有学号的卡片,学生准备小棒若干。

  教学过程:

  课前:

  一、复习引入

  对口令复习2、3、5的乘法口诀,由屏幕中的小游戏引入。

  二、操作探索,验证猜想

  1、合作发现

  百数表是咱们认识数的好帮手,找规律的好帮手。每个人手里都有一张百数表,请你在上面圈出出3的倍数。和小组内的同学商量一下3的倍数有什么特征。

  自主探究,小组合作,师巡视,帮助找3的倍数有困难的学生。

  小组代表合作,全班交流

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:3的倍数个位上0~9这十个数字都有可能。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  让我们在组数的过程中再深入研究一下3的倍数的特征。

  课件出示四组卡片和活动要求。

  学生合作探索,教师巡视参与。

  师:谁来代表你们小组汇报研究的情况?

  课件出示各组数字之和。

  师:请同学们观察各位上的数字和,你有什么发现吗?到底什么样的数才是3的倍数?你能大胆地进行猜想吗?

  生:我的.猜想是一个数的数字和是3的倍数的数,这个数就是3的倍数。(板书:各个数位上数字之和是3的倍数,这个数就是3的倍数)

  2、举例验证

  师:咱们发现的这个规律是不是具有广泛性,如果是更大的数是不是符合这个特征呢?谁能任举一例子并说明具体的验证方法?

  生:如4572这个数。我先把4572各位上的数字加起来,看数字之和是不是3的倍数,再看这个数是不是3的倍数。

  师生共同讨论验证,并引导学生体会验证方法。(略)

  学生在小组内举例验证。

  汇报验证结果,形成共识,得出结论,总结出规律。

  三、课堂巩固练习

  3的倍数的特征你掌握了吗?我们做一下练习题。过五关斩六将,看谁是英雄好汉。闯关即将开始,你准备好了吗?

  第一关:下面哪些数是3的倍数?

  42 134 78 268

  第二关:在下面每个数的□里填上一个数字,使这个数是3的倍数。

  ① 3□ ② 2□6 ③ 2□ 5 ④ 47□

  学生在4□的□中填出0、3、6、9后,师:请你们观察填的3个数字,能发现其中的规律吗?

  生:它们依次相差3。

  第②、③④题的过程同上。

  生:因为0不能做一个数的最高位。

  四、拓展:生活中的数学

  课件出示小游戏

  五、课堂小结

  咱们今天学的是什么内容?谁来具体地说说3的倍数的数有什么特征?

  六、板书设计

  3的倍数的特征

  3的倍数的特征:各个数位上数字之和是3的倍数

《3的倍数的特征》教案6

  学习内容:3的倍数的特征

  学习目标:通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程,能判断一个数是不是3的倍数。

  学习重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  学习难点:3的倍数的数的特征的归纳过程。

  教学准备:计数器、数位表

  学习过程:

  自主学习(我能行)

  一、知识链接

  下面的数,哪些是2的倍数?哪些是5的倍数。

  364、420、515、736、1028、905

  我们在判断一个数是否是2、5的倍数,都是从一个数的位上的情况来判定。

  二、新知学习

  (一)设疑引入:探索活动:3的倍数的特征

  师:如果用3、4、5这三个数字,你们能否组成是3的倍数的数吗? 请同学们试一试。

  个位上是3的数,它就一定是3的'倍数吗?

  (二)探索数位表

  用红色笔把是3的倍数的数圈起来,观察它们的特点

  温馨提示:

  (1)从个位看,这些数有什么共同特征吗?

  (2)将各个数位上的数加起来,你能发现什么?

  (三)用计数器:在计数器上拨一个3的倍数的数,观察所拨珠子的个数与3的关系。

  小组交流

  我发现:一个数各个数位上的数字的( )是3的倍数,这个数就是3的倍数

  三、巩固新知

  1、下面哪些数是3的倍数?

  46 24 75 104 304 108 111

  2、填空

  在□中填上一个数字,使这个数是3的倍数。

  1□ 2□6 52□ 36□

  3、看谁最聪明?

  用你的方法判断下列数是不是3的倍数?

  369639693、13693692、121212127

  四、学习小结

  闯关达标(我最棒)

  轻松第一关:

  1、3的倍数的特征是( );请把3的倍数圈起来:

  11 12 13 14 15 16 17 18 19 20

  91 92 93 94 95 96 97 98 99 100

  2、.小小法官

  (1)同是2、5和3的倍数的数的个位一定是0.( )

  (2)个位上是3、6、9的数,都是3的倍数( )

  (3)75既是5的倍数,又是3的倍数( )

  跨越第二关:

  1、在1——20自然数中,找出3的倍数:( ) 找出5的倍数( );找出既是2的倍数又是5的倍数( ),找出同时是2、3、5的倍数的数( )

  2、任意两个数字组成符合下面要求的数

  6、 0、 9、 5

  (1)3的倍数:( )

  (2)既是2的倍数又是3的倍数:( )

  (3)既是3的倍数又是5的倍数:( )

《3的倍数的特征》教案7

  课题3的倍数的特征

  课时 一课时

  一、教材内容分析

  《3的倍数的特征》是人教版小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。

  先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难。

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程理解3的倍数特征,能判断一个数是不是3的倍数。

  2、 使学生在学习过程中积累数学活动的经验,培养学生观察、分析、动手操作及概括问题的能力,发展学生的抽象思维和培养相互间的交流、合作与竞争意识,提高学生的合情推理能力。

  3、通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。

  教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。

  教学难点:3的倍数的数的特征的归纳过程。

  三、学习者特征分析

  学生在学习本课之前,已经学习了2和5的倍数的特征,养成善于动脑思考、讨论、交流与研究,积极进行小组合作的习惯。可以说,学生有了一定的自学与研究的能力。

  学生容易从末尾数字进行判断这个数是否是3的倍数。所以,在教学本课时,让学生通过观察、思考、分析、归纳等活动,让他们真正理解、掌握、判断3的倍数的方法。

  四、教学策略选择与设计

  根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:

  1、创设情景,激趣导入。

  2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。

  3、采用让学生自主发现的学习方法。

  学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。

  六、教学过程

  教学过程

  一、猜想,激发兴趣

  二、探究,验证猜想

  三、练习,巩固结论

  1、提问:你能用5,6,7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?

  2、 谈话:我们已经知道看一个数是不是2或5的倍数,只要看这个数的个位,你能猜猜什么样的数是3的倍数?

  3、提问:同意他的猜想吗?他猜的到底对不对呢?我们一起来研究一下。

  四、总结,拓展延伸

  1、课件出示百数表

  (1)提问:请同学们观察一下,3的倍数个位上是哪些数字?刚才那位同学的猜想正确吗?要判断一个数是不是3的.倍数,能不能只看个位?

  (2)究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。(板书课题:3的倍数的特征)

  2、提问: 观察百数表中圈出的3的倍数,你们发现什么?

  (1)引导学生先横着看,竖着看,仍然找不到3的倍数特征。

  (2)引导学生斜着看:第一斜行3,12,21。

  汇报交流:

  ①第一斜行3的倍数交换两个数字的位置后,得到的还是3的倍数。

  ②第一斜行3的倍数各位上数字相加,和是3的倍数。

  (3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?

  (4)将百数图中的数的顺序打乱,刚才大家发现的还正确吗?

  3、操作验证

  (1)在计数器上分别拨出几个3的倍数:12、42、45、75、87看看各用了几颗算珠?

  小结:算珠的个数与3的倍数之间的联系。

  (2)观察这些3的倍数,它们十位与个位上数的和跟3有着怎样的关系?

  教师板书:3的倍数,它各位上的和一定是3的倍数。

  4、学生举例验证此规律在100以外的数是否适用。

  5、运用结论,完成试一试。

  五、课外作业:

  课件出示:

  1、下面的数,那些是3的倍数?

  29 45 51 67 284 196 3456 760058947641587

  组织交流:哪些数是3的倍数?你是怎样判断的?

  2、在每个数的口里填上一个数字,使这个数是3的倍数。

  7口 20口 口12 3口5

  提问: 为什么填这个数?你是怎么想的?还可以填哪些数?

  3、从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的三位数?

  0 5 6 7

  4、猜猜老师的年龄:老师的年龄既是2的倍数,又是5的倍数,又是3的倍数,老师今年( )岁。

  5、看谁最聪明?

  23663997是3的倍数吗?你是怎样判断的?

  学生交流,汇报。

  快速判断下列数是不是3的倍数?再用计算器验证前三个。

  369639693、13693692、121212127、18275499、9233……3

  总结:

  当一个数的数位上出现3、6、9时,可以先去掉3、6、9,剩下的数的两个数和是3的倍数,再去掉,最后去掉三个数的和是3的倍数。余下的数是3的倍数。那么这个数就是3的倍数,不是则相反。

  板书设计

  33的倍数的特征

  33的倍数,它各位上的和一定是3的倍数。

  课后作业 研究6和9的倍数的特征。

《3的倍数的特征》教案8

  教学目标:

  1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。

  2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。

  教学重、难点:是3的倍数的数的特征。

  教学过程:

  一、提出课题,寻找3的特征。

  师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?

  生1:个位上是3、6、9的数是3的倍数。

  生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。

  生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。

  师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)

  师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的`百以内的数表。)(如下图)

  二、自主探索,总结3的特征师:

  先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)

  师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。

  同学同桌交流后,再组织全班交流。

  生1:我发现10以内的数只有3、6、9是3的倍数。

  生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。

  生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。

  师:个位上的数字没有什么规律,那么十位上的数有规律吗?

  生:也没有规律,1~9这些数字都出现了。

  师:其他同学还有什么发现吗?

  生:我发现3的倍数按一条一条斜线排列很有规律。

  师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?

  生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。

  师:这是一个重大发现,其他斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。

  师:现在谁能归纳一下3的倍数有什么特征呢?

  生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。

  师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?

  生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。

  师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。

  同学先自身写数并验证,然后小组交流,得出了同样的结论。

  全班齐读书上的结论。

  三、巩固练习:

  完成p19做一做

  四、课堂小结:

  这节课你有什么收获

《3的倍数的特征》教案9

  小学数学《3的倍数的特征》教案

  一、教学目标

  【知识与技能】

  理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。

  【过程与方法】

  经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。

  【情感、态度与价值观】

  在猜想论证的过程中,体会数学的严谨性。

  二、教学重难点

  【重点】3的倍数的特征,判断一个数是否是3的倍数。

  【难点】3的倍数的数的特征的归纳过程。

  三、教学过程

  (一)导入新课

  复习导入:我们是如何研究2、5的倍数的特征的.?

  引出继续利用百数表研究3的倍数的特征并出示课题。

  (二)讲解新知

  组织学生在百数表中圈出3的倍数,提出问题:能否猜想3的倍数的特征会与什么有关?

  学生发现从个位探究并不成功,教师顺势引导——单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看。引导学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。

  组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律,之后教师再组织学生反馈多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。

  提问学生应该如何找到3的倍数,引导学生发现总结规律的必要性。

  师生共同总结得出:一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  (三)课堂练习

  1。判断下面的数是否为3的倍数。

  24 58 46 96

  2。尝试在每个数后面加一个数使这个三位数成为3的倍数。

  (四)小结作业

  提问:今天有什么收获?

  带领学生回顾:3的倍数的特征;发现研究倍数的特征,方法却各有不一,体会数学知识的多样性。

  课后作业:

  思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。

  四、板书设计

《3的倍数的特征》教案10

  教学内容:九年义务教育六年制小学数学第八册P76-77。

  教学目标:

  1、让学生通过观察、操作、猜想、验证等活动,认识3的倍数的特征,会判断一个数是不是3的倍数。

  2、让学生在学习过程中学会用分析、比较、归纳或猜想,检验等方法,并培养学生动手实践能力。

  3、在探索3的倍数的特征的过程中,提高学生合作交流的能力,感受数学学习的乐趣,体会数学思维的严谨。

  教学重点:探索3的倍数的特征。

  教学难点:运用3的倍数的特征解决实际问题。

  设计理念:通过活动,让学生经历一个完整的探索过程,从中认识3的倍数的特征并提高学习能力。

  教学步骤

  教师活动过程

  学生活动过程

  一、复习导入

  你能用2、3、5、6、9这些数字中任先三个数字组成是2的倍数的三位数吗?为什么这样组数?

  同样选三个数组成是5的倍数的数。

  如果仍从这些数中任选三个数字,你能不能组成是3的倍数的三位数呢?这些数有什么共同的特征?

  学生回答

  学生练习

  学生讨论回答

  二、新授

  请你拿出百数表,在表中圈出3的所有的倍数。

  从这些数中你发现了什么?

  在计数器上拨几个3的倍数,并数一数一共用了多少颗珠子?

  所用算珠的总颗数有什么特点?

  总颗数与这个数的各位上的数有什么关系?你能得出3的倍数的特征吗?

  说说你们研究发现了什么?3的倍数有什么特征?

  用你们发现的3的倍数的特征来检验下面的哪些数是3的倍数:

  245432141903651

  三、完善认识

  1、提出试一试中的问题:

  2、全班交流,明确认识。

  1、如果一个数不是3的`倍数,这个数各位上数的和会是3的倍数吗?

  要求:分别找几个这样的数算一算,并将研究结果在小组里交流一下。

  2、如果一个数不是3的倍数,这个数各位上数的和不会是3的倍数。进一步要求:把例题中发现的结论和试一试中结论结合起来说一说。

  四、判断练习

  1、做想想做做第1题

  2、做想想做做第2题

  3、做想想做做第3题

  4、做想想做做第4题

  5、做想想做做第5题

  要求学生独立作出判断,并把题中3的倍数圈起来。

  交流:题中哪些数是3的倍数,你是怎样判断的?

  明确方法:判断一个数是不是3的倍数,可以先把这个数各位上数相加,看得到的和是不是3的倍数。

  启发:这几道除法算式有什么共同特点?如果一个数除以3没有余数,说明这个数与3存在什么关系?反过来,如果一个数是3的倍数,那么这个数除以3的结果会有余数吗?你打算怎样进行判断?

  让学生独立填写,再在小组里交流,你能找到几种不同的填法。

  学生按要求操作,指名问答:9的倍数都是3的倍数吗?

  各自组数,并把组成的数记录下来。指名报答案,全班学生评议。

  提问:你今年几岁?再过几年你的岁数是3的倍数?你是怎样想的?

  五、全课小结:

  3的倍数有什么特征?

  判断一个数是不是3的倍数时,你会怎样想?有哪些经验告诉全班同学?

  学生回答

  六、作业设计

  练习与测试

  教后反思:

《3的倍数的特征》教案11

  学习内容

  3的倍数的特征(教材第10页的内容及教材第11页练习三的第3~6题)

  第1课时课型新授

  学习目标

  1、使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

  2、引导学生学会判断一个数能否被3整除。

  3、培养学生分析、判断、概括的能力。

  教学重点

  理解并掌握3的倍数的特征

  教学难点

  会判断一个数能否被3整除。

  教具运用

  课件

  教学方法

  二次备课

  教学过程

  【复习导入】

  1、学生口述2的倍数的特征,5的倍数的特征。

  2、练习:下面哪些数是2的倍数?哪些数是5的倍数?

  324 153 345 2460 986 756

  教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

  板书课题:3的倍数的特征。

  【新课讲授】

  1、猜一猜:3的倍数有什么特征?

  2、算一算:先找出10个3的倍数。

  3×1=3 3×2=6 3×3=9

  3×4=123×5=15 3×6=18

  3×7=213×8=24 3×9=27

  3×10=30……

  观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

  提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

  12→21 15→5118→81 24→42 27→72

  教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

  (以四人为一小组、分组讨论,然后汇报)

  汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

  3、验证:下面各数,哪些数是3的倍数呢?

  21054 216 129 9231 9876

  小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

  4、比一比(一组笔算,另一组用规律计算)。

  判断下面的数是不是3的倍数。

  34025003 1272 2967

  5、“做一做”,指导学生完成教材第10页“做一做”。

  (1)下列数中3的倍数有。

  143545100 332 876 74 88

  ①要求学生说出是怎样判断的`。

  ②3的倍数有什么特征?

  (2)提示:

  ①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

  ②接着再考虑什么?(最小三位数是100)

  ③最后考虑又是3的倍数。(120)

  【课堂作业】

  完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

  【课堂小结】

  同学们,通过今天的学习活动,你有什么收获和感想?

  【课后作业】

  完成练习册中本课时练习。

  板书设计第2课时3的倍数的特征

  一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

  【作业设计】

  学习目标,教学方法,数学,教师,能力。

《3的倍数的特征》教案12

  【教学设计】

  一、活动激趣,引发思考

  活动:我是小小“设计师”。

  1.用5、6、7,设计一个三位数。

  (1)使这个三位数一定是2的倍数。

  (2)使这个三位数一定是5的倍数。

  【设计意图:抓住学生刚学完2、5的倍数特征这个契机,让学生用5、6、7组数,这样既复习了前两节课所学的知识,也与后续要学习的3的倍数特征相互呼应。】

  2.设计一个三位数,使它一定是3的倍数。看谁的设计有创意?

  预设:学生除了用计算的方法外,还可能会出现以下两种情况(如果不出现,教师可以将其作为自己的设计来展示,并让学生猜猜老师是怎么想的):

  (1)利用各位上都是3的倍数来设计数。(2)利用数字和是3的倍数来设计数。首先让学生说说自己的想法,第一种方法结合竖式很容易想明白,而第二种方法需要实际验证。接着引导学生发现:3的倍数并不一定各个数位都是3的倍数。最后围绕第二种关于利用数字和来设计3的倍数的情况,开始追根溯源,使学生明理。

  【设计意图:一般教学3的倍数特征时,教师都会让学生进行猜想。如此,孩子们很容易受刚学过的2、5的倍数特征的影响进行负迁移。而这种第一印象的错误烙印,往往不会收到我们想要的“吃一堑、长一智”的效果。再者,这个猜想已经在课前调研的时候做过了,如果这里再重复出现,会让学生感觉老生常谈、枯燥乏味。第三,班里已有一半多的孩子知道了3的`倍数特征,这个特征已不再是秘密了,此时也就没有什么猜想的必要了。这时,还不如选择用事实来说话,而且会应用比仅仅知道结论重要得多。】

  二、借助直观,探究明理

  1.出示百数表:观察圈出的3的倍数的分布情况,感受与2、5的倍数特征的差异。

  2.观察下面这些数,你发现了什么?变中有没有不变的?(每一斜行的数的数字和都不变,而且都是3的倍数。

  3.分组检验:出示不是3的倍数的数,观察数字和是否一定不是3的倍数。

  4. 100以内3的倍数的数字和有规律,那么100以上的3的倍数是否依然有这样的规律?引导学生发现:逐一研究太麻烦,数也举不尽,可以借用研究2、5的倍数时所用的小方格来研究。

  5.揭示“数字和”的秘密。

  (1)选取三个数:“12、48、123”,引导学生利用小方格探究明理。

  ①出示“12”,初步明理,让学生说说想法或自己的发现。

  ②围绕“48”,深入明理,有层次地展示各种方法,引导学生对这些方法进行筛选优化、分析归纳。学生在实际操作中可能会用弃3法弃尽,也可能不弃尽,但最终都会把剩余的个数加起来除以3,也就是直至弃到不能弃为止。

  ③对于“123”,可先让学生闭眼想象各位所余,然后再实际验证。

  (2)引导学生逐步发现。

  ①在方格图上不一定要3个3个地圈,十位上可以9个一圈,百位上可以99个一圈……

  ②可以把每位剩余的方格合起来再弃3,直到不能弃为止,看最后余下几个。

  ③各位数字恰好是各位上弃9、弃99后所余下的格数(如下图),数字和也就是此时余下小方块的总和,之所以把数字和去除以3,就是要看看余下的这些小方格再3个3个地分,最终是否会有余。

  6.小结3的倍数特征。

  【设计意图:揭示3的倍数特征是看数字和并不难,难的是数字和的真正含义,本节课的重点和难点也正在于此。】

  三、实际应用,拓展提高

  1.观察刚上课时,用5、6、7所组的2的倍数:576、756,以及5的倍数:765。这几个数是3的倍数吗?引导学生发现:如果一个数是3的倍数,那么交换各位数字的顺序,所组成的数依然是3的倍数,因为数字和不变(5+6+7=18)。

  同时也让学生感知到连续的数字组成的三位数一定是3的倍数,因为5+6+7=18,即6×3=18。

  2. 369为什么一定是3的倍数,能否联系小方格来说明?

  四、全课总结

  为了检验这次教学效果,我对学生进行了后测:

  (1)圈出下列各数中3的倍数:53、69、72、95、108、264。

  (2) 417是3的倍数吗?你能说明其中的道理吗?从中可见,学生不仅能应用3的倍数特征进行判断,而且能借助小方格说明道理,真正明白了数字和的含义。

《3的倍数的特征》教案13

  教学目标:

  1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

  2、培养分析、比较及综合概括能力。

  3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

  教学重点:

  掌握3的倍数的特征,正确判断一个数是否是3的倍数。

  教学难点:

  探索3的倍数的特征。

  教学过程:

  一、创设情景,明确目标(3分钟)

  (一)创设情景,反馈预习

  1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

  P:16、24、85、102、138、170、

  2 的倍数:16、24、102、138、170

  5的倍数:85、170

  即是2的倍数又是5的倍数:170

  师:说一说,你是怎么想的?

  生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

  2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

  师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

  3、教师板书课题:3的倍数的特征。

  (二)明确目标,引领方法

  1、出示学习目标(见学案),生自读目标。

  2、同伴说说自己的理解,谈谈如何实现目标。

  设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

  二、自主学习,同伴合作(15分钟)

  (一)自主学习,自我感知

  1、小棒游戏,探究规律

  师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

  师:你来!

  师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

  学生摆出:51

  师:51是3的倍数。我算的比计算器快吧?

  师:能摆一个三位数吗?

  学生摆出:312

  师:312是3的.倍数。

  师:再来一个难点的。

  学生摆出:1123

  师:1123不是3的倍数。

  师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

  2、小组合作探究

  (1)用3根小棒摆一个数,这些都是3的倍数吗?

  师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。

  小组内合理分工,请大家看一下导学案的合作要求

  ①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

  ②用计算器算一算,将3的倍数圈出来。

  ③仔细观察表格,从中你发现了什么?

  (2)用4根再摆出一些数,这些都是3的倍数吗?

  (3)用6根再摆出一些数,这些都是3的倍数吗?

  (4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

  预设

  第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

  第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

  第三族,用6根小棒摆:都是3的倍数。

  问题:你发现了什么?

  生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

  师:关键要看小棒的根数,了不起的发现。

  生:只要小棒的根数是3的倍数,这个数就是3的倍数。

  师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

  生: 9根、12根、15根……都行——

  (5)真的是这么回事吗?以9为例摆摆看。

  师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

  生:我用9根小棒摆出了36,36是3的倍数。

  师:哪个小组还想出三位数、四位数或是更大的数?

  生:我用9根小棒摆出了216,216是3的倍数。

  生:我用9根小棒摆出了3015,3015是3的倍数。

  师:说得完吗?

  生:说不完。

  师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

  生:很合理。

  师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

  师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

  3、提升

  师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

  师:小组内交流一下。

  小组活动。

  师:谁来说说?

  生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

  生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

  生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

  4、探究原因,区别理解

  (1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

  研究16

  师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

  但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

  用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

  看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

  通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

  (2)问:为什么3的倍数特征要看各个数位相加的和呢?

  举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

  一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

  138分一分,试一试,看看是不是3的倍数

  一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

  (2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

  P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

  三、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、圈出3的倍数的数:42、78、111、165、655、5988

  3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

  (预设:生1:1。

  师:可以吗?还有其他答案吗?

  生2:1,4,7都可以。

  师:理由呢?

  生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

  师:恭喜你,三种可能都被你们猜中了!

  师:如果它既是2的倍数,又是3的倍数呢?

  生:24。

  师:为什么只有24可以呢?

  生:因为只有24既是2的倍数,又是3的倍数。)

  (二)拓展训练,灵活创新

  以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

  13689362754、123456789

  老师:如果用各个数位之和是3的倍数,比较麻烦。

  但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

  后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

  教师巡视,个别辅导。

  (二)同伴讨论,互助共进

  完成学案中“同伴合作,互助共进”内容。

  重点交流学生所举的例子。

  教师巡视,个别辅导。

  设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

  四、师生共学,交流分享(5分钟)

  (一)小组展示,彰显风采

  指名小组进行汇报。

  (二)师生完善,共同提高

  1、学生纠正、补充、质疑

  2、教师精讲、点拨、

  在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

  设计意图通过教师的点拨完善学生对比的认识。

  五、巩固拓展,形成能力(10分钟)

  (一)巩固训练,夯实基础

  先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

  1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

  把一个数各个数位上的数相加是3的倍数……

  2、看一看哪些是3的倍数:42、78、111、165、655、5988

  原来判断是用除法,现在用加法。改革了

  3、不用计算,能快速算出来那个式子有余数吗?

  802、3;342、3

  4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

  5、下面都是吗?789、345、654

  都是,有什么特点?相邻、连续三个自然数。

  是不是所有都是呢?举例:123.为什么呢?

  654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

  6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

《3的倍数的特征》教案14

  教学内容:

  教材第10——13页,例2,学习3的倍数的特征。

  教学目标

  1、经历在100以内经的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。

  2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。

  教学重、难点:

  重点:理解3的倍数的特征,能正确判断一个数是不是3的倍数。

  难点:探索发现和归纳3的倍数的特征。

  教学准备:

  计算器、多媒体课件

  教学过程

  一、复习引入

  12、18、20、25、48、60、72、90

  2的倍数有:

  5的倍数有:

  既是2的倍数又是5的.倍数有:

  师:我们学会了2.5的倍数的特征,你们想不想学习3的倍数的特征?

  生:想。

  二、探究新知

  师:课件出示百数表,请同学们在上面找出所有3的倍数。

  学生汇报课件演示圈出3的倍数。

  师:请观察这个表格,你发现3的倍数有什么特征吗?把你的发现与同桌交流一下。

  生1:这个表格里第一个数和第二个数相差3。

  生2:3的倍数的个位上可以是任意数。

  生3:我发现3的倍数不管横着看和竖着看,3的倍数都是隔两个数出现一个。

  师:这个百数表里的3的倍数排列有什么规律?

  生:表格里3的倍数都按一条一条斜线排列很有规律。

  师:我们可以按斜线把它分组,可以一组一组来研究。每条斜线上的数有什么规律吗?

  生:从上往下看,连续两数都是十位数增加1,而个位数减少1。

  师:十位数加1,个位数减1组成的数与原来的数有什么相同的地方?

  生:我发现了“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都是等于3。

  师:这是一个重大发现,其它斜线呢?

  生1:我发现“6”的那条斜线上的数,两个数字加起来的和等于6。

  生2:“9”的那条斜线上的数,两个数字加起来的和等于9。

  生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外两个数的和是12、15、18。

  师:100以内3的倍数有这个特征。不是3的倍数的可有这个特征,能举例验证码?

  生:比如74、47、37……。不是3的倍数没有这个特征。

  师:你们真厉害!这个规律对100以内的数适用,100以外的数是否适用,能举例验证吗?

  找学生说数,其他学生用计算器验证。

  归纳:一个数各个数位上数字的和是3的倍数,这个数一定是3的倍数。

  练习

  1、下面这些数中,哪些是3的倍数?

  354 160 72 375 820 964 6000

  找学生回答并说出理由

  2、请你在口里填上一个数字,使这个数字是3的倍数,比比谁的填法多。

  4口口1 1口4 84口

  猜一猜:

  王叔叔家的电话号码是63665269,它是3的倍数吗?

  方法一:6+3+6+6+5+2+6+9=43

  方法二:6 3 6 6 5 2 6 9

  5+2=7,所以63665269不是3的倍数。

  三、巩固练习

  1、快速判断出哪些数是3的倍数?

  96 2963 1963 1605 20xx

  2、数学游戏

  从下面选出三张数字卡片,组成一个是3的倍数的三位数。你一共可以组成多少个这样的3位数?

  0、5、6、7

  所选的三张卡片上的数相加的和应具备有什么特征?

  (1)、用选的三张卡片能组成几个3的倍数?

  (2)、组成的数既是2的倍数,又是3的倍数,还是5的倍数。

《3的倍数的特征》教案15

  学习目标:

  使学生通过观察、猜想、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。

  2. 使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。

  3. 使学生在参与学习活动的过程中,体验成功的喜悦,增强学习数学的兴趣。

  4.让学生感受生活中蕴藏着丰富的数学知识。

  教学重点、难点:

  1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。

  2、难点:让学生通过操作实验自主发现3的倍数的特征。教学准备:小棒、计算器、数位表

  教学过程:

  一、知识链接前面同学们已学习了2和5的倍数的特征,下面老师就来检查一下你们能用3、4、5这三个数字来组成是2的倍数的三位数吗?(学生根据教师要求组数,教师板书出学生组数的情况:354、534。)

  师:同学们你们为什么这样组数呢?同样用这三个数字,你们能组成是5的倍数吗?(教师根据学生组数的情况板书出:345、435。)你们是怎样想的呢?(设计意图:这样采用组数的方法,既复习了2和5的倍数的数的特征,又可为下面学习新的内容打下一定的基础,同时又激发了学生学习的兴趣。)

  二、新知学习

  (一)设疑引入如果仍用这三个数字,你们能否组成是3的倍数的数吗?

  请同学们试一试。(教师根据学生组数的情况板书出:543、453。 )这两个数是3的倍数吗?(学生通过试除验证,得出这两个数都是3的倍数。)从这两个是3的倍数的数来看,你想到了什么?能被3整除的数 有什么特征?(设计意图:学生已经掌握了2的倍数和5的'倍数的数的特征,在研究3的倍数的数的特征时,会很自然地想到“看个位上的数”。这里正是把学生的已有知识经验作为教学资源,巧妙地通过对比引起学生的思维冲突,促使学生自觉克服思维定势的负面影响,激发学生强烈的探究欲望。)

  (二)制造认知矛盾刚才同学们是从个位上去寻找3的倍数的“特征”的,那么个位上是3的数,它就一定是3的倍数吗?(我紧接着举出13、23、46、126、49等数让学生试除判断,从而由此引导学生推翻假设。)同学们,注意观察一下这几个数个位上的数字,个位的数字都是3的倍数,但它们的结果有的是3的倍数,但有的数却不是3的倍数,那么我们能从个位上找出是3的倍数的数的特征吗?

  (三)设问激趣我们再看看刚才的那3个数字,你们还能利用3、4、5这三个数字,组成一个三位数, 然后再看看它是不是3的倍数,好吗?(学生再通过3、4、5这三个数字任意组成一个三位数,通过试除发现:所组成的三位数都是3的倍数。)通过刚才的发现,那么3的倍数的特征有没有规律可循呢?

  下面我们就一起来学习“3的倍数的特征。”(板书课题)(设计意图:通过设置这样一个教学小“陷阱”,引导学生提出3的倍数的特征的假设,然后推翻假设,引发认知矛盾,并再次创设问题情境让学生进行探究,这样的设计不仅有效地避免了“2和5的倍数的特征”思维定势的影响,而且进一步地激发了学生的求知欲望。)

  (四)操作中发现规律下面我们来做几个小活动,要求同桌之间互相合作完成。1. 活动一:每个同学手中都有一些小棒和一张数位表,先请同学们拿出其中的3根小棒,在数位表上摆出一个两位数或三位数,然后再用计算器进行验证(例如:用3根小棒摆出两位数:个位摆1根,十位摆2根,组成21……)请把摆出的数填在下面的表中:

  小棒的根数 摆出的数 3的倍数 不是3的倍数

  学生完成操作并填写表格。问:你摆了哪些数啊?(根据学生回答,填表)这些数都是3的倍数吗?(请在表里画“√”)追问:用3根小棒能摆出一个不是3的倍数的数来吗?(通过这样的设问,充分调动学生的求知欲望)

  1.如果有学生认为能摆出一个不是3的倍的数来,就请他自己在下面摆一摆,然后一起验证,再下结论。

  2. 活动二:再请同学们拿出5根小棒,按刚才的方法在数位表上摆出几个两位数或三位数,看摆出的数是不是3的倍数。(学生合作操作并填写表格。)问:用5根小棒摆出的数是3的倍数吗?追问:用5根小棒能摆出一个是3的倍数吗?(学生验证后回答)(设计意图:用实验操作的方法来教学3的倍数的特征,改变了以往先列举几组3的倍数和不是3的倍数的数字,然后引导学生归纳特征的教法。这样做,不但提高了数学知识本身的趣味性,而且让学生更好地经历了探究3的倍数的特征的过程。先让学生用3根小棒摆出3的倍数,学生非常投入地去摆数,结果成功了。再用5根小棒去摆,可就是摆不出3的倍数来,从而产生了很大的困惑。学生的困惑越大,继续研究的欲望就越强,从而为探索出结论打下坚实的基础。)

  3. 活动三:请同学们自己选择小棒的根数摆一摆,再按照刚才的摆法把结果填在表格里,并和小组里的同学说一说,从摆小棒的活动中,你发现了什么?(学生合作完成活动,并在小组里交流。)问:你选择的是用几根小棒摆的啊?结果怎样呢?你发现了什么?(如果小棒的根数是3的倍数,摆出的数就一定是3的倍数;如果小棒的根数不是3的倍数,摆出的数就不是3的倍数……)

  4. 活动小结:通过刚才的活动,我们发现3的倍数的一些特点,谁能归纳一下是3的倍数的数有什么特征吗?得出结论:一个数各位上数的和是3的倍数,这个数就是3的倍数(设计意图:通过学生任意选取小棒数量来进行实验和全班学生的汇报,让学生自主地操作、观察、比较、交流,进一步丰富前两次活动得出的结论,促使学生主动地发现规律,从而更好的获得相应的知识。)

  5.看书质疑(通过活动总结了结论,再让学生看书,来发现问题,从而加深了学生对新知的认识。)

  三、达标检测:

  通过实验,我们现在已经知道3的倍数的特征,你能运用这一规律来解决一些简单问题吗?

  1、完成课本第51页的做一做的第4题。(简单说说理由)

  2、说一说。(同桌间合作,一问一答,1人随便说一个数让另1人猜该数是否是3的倍数。要求所说的数尽量别超过4位,然后调换角色。)

  3、在下面每个数的□里填上一个数字,使这个数是3的倍数。 它们各有几种不同的填法?  □7 4□5 □44 65□引导学生掌握科学的填数方法:

  (1)先看已知数位上的数字的和是多少;

  (2)如果已知数位上的数字和 是3的倍数,那么未知数位的□里最小填“0”,要填的其它数字可依次加上3;如果已知数位上的数字和不是3 的倍数,那么未知数位的方格里可先填一个最小的数,使它能与已知数位上的数字的和凑成是3的倍数,要填的其它数字可在此基础上依次加上3.4、玩学号小游戏(上课前已分工好,按顺序一个号码代表一个学生,即“学号”)同学们刚才的题目完成得很精彩,最后我们再来玩一个小游戏。

  同学们都知道自己的学号是多少吧?那我们就来玩一个关于学号的游戏。请听:如果你的学号是2的倍数请你站起来;如果你的学号是5的倍数请你站起来;如果你的学号是3的倍数也请你站起来。刚才老师发现有些同学好象站起来2(3)次哦?你为什么要站起来2(3)次呢?请你用一句话说明理由。(重点突出30号、60号)学生回答后,师生共同小结,得出新的结论。(设计意图:通过各种趣味性强的练习,既让学生内化了“3的倍数的特征”,又让学生能从游戏中轻松的获得知识,而且内容一层层深入,让学生体会到知识的延伸性。另外还让学生感受到数学的奇妙和乐趣。)

  四、学习小结

  通过这节课,说一说你有什么收获啊?你印象最深的是什么?你对自己在课堂上的表现满意吗?

【《3的倍数的特征》教案】相关文章:

3的倍数教学反思07-12

约数和倍数的意义教案04-09

《最小公倍数》教案05-17

生物教案:生物的特征09-01

倍数和因数教学反思03-01

五年级数学教案:《约数和倍数》06-05

《生物的特征》说课稿11-30

人教版五年级数学下册第二单元《因数与倍数》教案04-09

求一个数的约数和倍数06-11

加3的教案01-06