《最小公倍数》教案
作为一名教师,通常需要准备好一份教案,借助教案可以让教学工作更科学化。教案要怎么写呢?以下是小编精心整理的《最小公倍数》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《最小公倍数》教案1
教学内容:
最小公倍数
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
学习目标:
1、理解最小公倍数的意义
2、初步学会求两个数的最小公倍数。
学习任务:
任务一 理解最小公倍数的意义
任务二 求两个数的最小公倍数
教学过程:
一、激情导课
1、师:同学们,看今天我们要学习什么?(最小公倍数)
看到这个题目,你会想到我们以前学过的什么知识?(倍数)
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的`记住它。
二、民主导学
任务一
一、任务呈现
师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天
二、自主学习
教师巡视学习情况
三、展示交流
1、师:他们可选那几日外出?(12、24)
你是怎样选出来的?根据回答板书;
妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数
爸爸的休息日:6 12 18 24 30 -----6的倍数。
共同的休息日:12 24 -----4和6的公倍数
最近的一天:12------4和6的最小公倍数
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调 4 的公倍数就是妈妈的休息日
6 的公倍数就是爸爸的休息日
4 和6的公倍数就是爸爸和妈妈的共同休息日
4、最近是哪一天? 12
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示 出示课件
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4 和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
7、89页做一做
二、那如何求最小公倍数呢?
任务二
求两个数的最小公倍数
一、任务呈现
1、求6和8的最小公倍数
2、想一想
1.你还能想出几种求法?
2.公倍数有多少个?你能找出最大的公倍数吗?
3.两个数的公倍数和最小公倍数之间有什么关系?
二、自主学习
三、展示交流
1、把不同求法板书
2、交流以上三个问题
(三)检测导结
1、目标检测
求下列每组数的最小公倍数(要求5分钟)
2和7 4和8
3和5 6和15
2、结果反馈
一次正确5分,自己改正4分,帮助改正3分,
3、反思总结 谈谈收获和不足
《最小公倍数》教案2
教学目标:
1、初步建立公倍数和最小公倍数的概念;
2、初步培养学生的数学应用意识与解决简单实际问题的能力。
3、培养学生的比较推理与抽象概括能力。
教学重点:
公倍数与最小公倍数的概念建立。
教学难点:
运用“公倍数与最小公倍数”解决生活实际问题
教法学法:
根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。
教具准备:
印有月历纸。
教学过程:
一、创设情境,设疑引入
教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打
算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?
请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。
根据学生的回答,教师逐步完成以下板书
妈妈的休息日:4、8、12、16、20、24、28
爸爸的休息日:6、12、18、24、30
他们共同的休息日:12、24
其中最早的一天:12
(以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的`特点,体会求最小公倍数的基本思路。)
二、激思引探,教学新知
1.几个数的公倍数和最小公倍数的概念教学
从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。
4的倍数:4、8、12、16、20、24、28
6的倍数:6、12、18、24、30
4和6的公倍数:12、24
其中最小的一个:12
师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的,不可能写出一个数的所有倍数).
师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)
师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)
(通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)
2、及时练习
师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。
三、巩固练习
1、书本练一练的第一题
2、书本练一练的第三题
3、书本练一练的第四题。
4、判断题
(1)两个数的积一定是这两个数的公倍数。
(2)两个数的积一定是这两个数的最小公倍数。
(3)两个数的公倍数是无限的,而最小公倍数只有一个。
此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。
四、课堂小结:学生回忆整堂课所学知识。
学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。
整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。
《最小公倍数》教案3
一、教材简析
《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。
二、教学目标及教学重、难点
根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:
2.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。
3.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。 教学重点: 公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。
教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。
三、设计理念
数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本1.让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。 思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。
四、教学过程
(一)故事引入 感知概念
出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。
根据学生的汇报,教师完成板书:
巴依老爷的休息日 4、8、12、16、20、24、28 ??
账房先生的休息日 6、12、18、24、30 ??
他们共同休息日 12、24??
最早的休息日12
【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。
(二)加深理解 总结方法
1.公倍数和最小公倍数的概念教学
从“巴依老爷的休息日” 、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、 “4和6的最小公倍数”)。教师完成板书
巴依老爷的休息日(4的倍数) 4、8、12、16、20、24、28 账房先生的休息日(6的倍数) 6、12、18、24、30 ?? 他们共同休息日(4和6的公倍数) 12、24
最早的休息日 (4和6的最小公倍数) 12
【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。
2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的'形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)
【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。
(三)巩固运用
再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)
出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?” 问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)
【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。
(四)解决问题 深化理解
在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)
【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。
《最小公倍数》教案4
教学目标
(1)使学生能比较熟练地掌握求最大公约数和最小公倍数的方法,并且能够根据不同,灵活运用简捷的方法。
(2)综合运用知识,进一步沟通知识间的联系。
教学重点、难点
重点、难点:能够根据不同,灵活运用简捷的方法。
教具、学具准备
教 学过程
备 注
一、基本练习
1、填空。(课本第67页第7题)
(1)9和27这两个数,()能被()整数,()是()的倍数,()是()的约数。
(2)20以内既是偶数又是素数的数是(),既是奇数又是合数的数是()
(3)在4、9和16中,成互质数的两个数有()和();()和()。
(4)三个素数的最小公倍数是42,这三个素数是()、()和()。
(5)如果甲数=2×3×5,乙数=2×3×7,那么甲数与乙数的最大公约是(),最小公倍数是()。
学生先填在书上,再集体交流讨论,注意让学生说说思考方法。
2、很快说出下面每组数的最大公约数和最小公倍数。
11和49和65、10和20
16和1580和20年5、6和7
说的过程中注意让学生说出思考的过程及理由。
3、求下面各组数的最大公约数和最小公倍数。
80和10015、8和30
25和330、60和75
19和388、9和10
让学生用短除法做,选做三题,交流时注意用短除法要注意的地方,同时让学生说说还有其他的思考方法。
二、综合练习
1、你能用下面的一个或几个概念和一个或几个数连起来说一句话吗?
整数自然数整除约数倍数
奇数偶数合数素数质因数
公约数最大公约数公倍数最小公倍数
教学过程
备 注
例2:2和8都是自然数,8能被2整除,8是2的倍数。
2、动脑筋:下面每组数中,你能找出不同类的`数吗?
(1)1473.82345
(2)21216223647
(3)23792943
学生找出不同类的数并说明理由,教师要注意答案的开放性,学生的答案只要有理由,就应该肯定和鼓励.
3、猜一猜老师家的电话号码.
老师家的电话号码是七位数,排列如下:
()最小的素数
()7的最大约数
()8的最小倍数
()最小的自然数
()最小的合数
()最小的一位奇数
()既不是素数也不是合数的数
三、课堂
师:本单元知识概念较多,同学们要注意这些概念的区别和联系,并能够综合练习。还有什么疑问吗?
四、作业
1、课本上第9、10题中剩余题目各选一列。
2、《作业本》
教学过程中,重在引导学生根据不同情况,灵活运用简捷的方法求最大公约数和最小公倍数
《最小公倍数》教案5
教学过程:
一、基础练习
找出下面每组数的最小公倍数。
4和6 3和7 5和9 10和6
二、完成第25页的5~8题。
1、出示第5题
⑴ ①让学生观察左边4题,说说这几组数有什么共同的特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?
(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、出示第6题
先由学生独立完成。
然后说说分别是什么方法求出每组上数的最小公倍数的?
3、出示第7题
先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实
际上就是求7和8的`最小公倍数。
4、出示第8题
先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。
三、小结:
通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
习题超市:
在〔 〕里写出下面各组数的最小公倍数.
2和3〔 〕 5和6〔 〕 2和7〔 〕
7和1〔 〕 6和8〔 〕 18和6〔 〕
4和6〔 〕 4和12〔 〕 19和20〔 〕
5和8〔 〕 10和15〔 〕 7和11〔 〕
8和9〔 〕 3和14〔 〕 9和12〔 〕
52和13〔 〕 13和6〔 〕 10和8〔 〕
6和72〔 〕 17和4〔 〕 36和27〔 〕
动脑筋:
1.一个自然数除以2、5、7,商都是整数,没有余数,这个数最小是多少?
2.有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?
3、73路汽车3分钟发一次车,96路汽车5分钟发一次车。73路和96路汽车同时出发后,再过多少时间会同时发车?
《最小公倍数》教案6
教学目标
1.掌握公倍数、最小公倍数两个概念.
2.理解求最小公倍数的算理,掌握用分解质因数求最小公倍数的方法.
教学重点
建立公倍数和最小公倍数的概念,掌握求两个数最小公倍数的方法.
教学难点
理解求两个数最小公倍数的算理.
教学步骤
一、铺垫孕伏.
1.导入:这节课我们开始学习有关最小公倍数的知识.
(板书:最小公倍数)
2.复习倍数的概念.
二、探究新知.
教学例1
例1、顺次写出4的几个倍数和6的几个倍数.它们公有的倍数是哪几个?其中最小的是多少?
4的倍数有:4、8、12、16、20、24、28、32、36……
6的倍数有:6、12、18、24、30、36……
4和6的公倍数有:12、24、36……
其中最小的一个是12.
1、学生分组讨论总结公倍数、最小公倍数的意义.
2、用集合图表示4和6的公倍数.
3、质疑:两个数的公倍数有什么特点?有没有最大的公倍数?
明确:因为每一个数的倍数的个数都是无限的,所以两个数的公倍数的个数也是无限的.因此,两个数没有最大的倍数.
4、反馈练习.
把6和8的倍数和公倍数不超过50的填在下面的`空圈里,再找出它们的最小公倍数是几.
明确:50以内6和8的公倍数只有2个;如果扩展数的范围,也就是50以外6和8的公倍数则是无限的.
(二)教学例2
引入:我们用分解质因数的方法求两个数的最小公倍数.
例2:求18和30的最小公倍数.
1、用短除式分别把18和30分解质因数.
板书:18=2×3×3
30=2×3×5
教师提问:18的倍数必须包含哪些质因数?
(18的倍数包含18的所有质因数)
30的倍数必须包含哪些质因数?
(30的倍数包含30的所有质因数)
18和30的公倍数必须包含哪些质因数?
(既要包含18的所有质因数,又要包含30的所有质因数)
2、观察集合图:18和30的最小公倍数应包含哪些质因数?
教师明确:18和30的最小公倍数里,只要包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了.2×3×3×5=90,所以18和30的最小公倍数是90.
3、小组讨论:如果少一个或多一个质因数行不行?
教师明确:如果少一个质因数,就不能保证公倍数里包含18和30全部的质因数,因而就不能得到它们的最小公倍数;如果多一个质因数,虽是18和30的公倍数,但不能保证是最小公倍数.
板书:
18和30的最小公倍数是2×3×3×5=90
4、反馈练习.
(1)先把下面两个数分解质因数,再求出它们的最小公倍数.
30=()×()×()
42=()×()×()
30和42的最小公倍数是()×()×()×()=()
(2)A=2×2B=2×2×3
A和B的最小公倍数是()×()×()=()
(3)用分解质因数法求24和18的最小公倍数时,小华得72,小林得144.谁做错了?
可能错在哪里?
5、求最小公倍数的一般书写格式.
①引导学生把两个短除式合并成一个.
板书:
②明确:综合短除式中所有除数和商与18和30的最小公倍数90所包含的所有质因数是一一对应的,因此把短除式中所有的除数和商乘起来,就得到18和30的最小公倍数.
③反馈练习:求30和45的最小公倍数.
④总结方法:求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来.
⑤反馈练习:求下面每组数的最小公倍数
6和824和20xx和2116和72
三、全课小结.
今天这节课我们主要研究了用什么方法求两个数的最小公倍数,它是为以后学习通分做准备的,希望大家能熟练的掌握这部分知识.
四、随堂练习
1.填空.
A=2×2×5
B=()×5×()
A和B和最小公倍数是().A和B的最小公倍数是2×2×5×7=140.
2.判断.
(1)两个数的积一定是这两个数的公倍数.()
(2)两个数的积一定是这两个数的最小公倍数.()
五、布置作业.
求下面每组数的最小公倍数.
12和1530和4036和5422和33
《最小公倍数》教案7
第一课时
教学内容:公倍数、最小公倍数的认识
教学目标:
使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。
教学过程;
一、复习
写出6、9的倍数,从1倍开始,2倍,3倍………
二、导入新课
1、例1、从小到大,顺次写出几个6的.倍数和几个9的倍数。找出6和9公有的倍数,最小的一个公有倍数是几?
2、分析:
6的倍数有:6、12、18、24、30、36、42……
9的倍数有:9、18、27、36、45、54……
6和9公有的倍数有:18、36……,其中最小的一个是(18),3、讲解概念:
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
4、想一想:
(1)有没有最大公倍数,为什么?
(2)倍数、公倍数、最小公倍数有什么区别?
三、练一练
1、把4和6的倍数和公倍数分别填入下面的圈内,再找出它们的最小公倍数。
2、完成书本第54页练习。
四、总结归纳
1、最小公倍数只有一个,而一个数的倍数是无限的,所以几个数的公倍数也是无限的。
2、在集合图内列举的倍数后面都要加“……”。
3、没有最大公倍数。
五、布置作业
反思:应加强对公倍数、最小公倍数概念的教学。并与公约数、最大公约数的概念联系起来记忆。并让学生知道为什么要学最大公约数而不学最小公约数,学最小公倍数而不学最大公倍数。
《最小公倍数》教案8
教学目标:
1、理解公倍数,最小公倍数的意义.
2、会用列举法,分解质因数,短除法求两个数的最小公倍数.
3、会求是互质数或有倍数关系的两个数的最小公倍数.
4、在知识的探究过程中,培养大胆质疑的习惯.
教学过程:
一、导入:
同学们,昨天我们班在舞台旁30米长的花带上每隔2米种一株桂花,树种的太密了,下午要重种,改成每隔3米种一株。现在大家出出主意,下午怎样种才能又快又好的完成任务呢?我一边说一边把课前准备好的图片分给各小组,让各小组讨论交流后交由小组长汇报本组的方案。各组讨论后出现以下三种情况:
1、全部拔起,重新测量后再种
2、头尾不动,把中间的全部拔起,重新测量后再种
3、除头、尾不动外,还有6米、12米、18米、24米共六株不用拔,只需拔10株,在每两株中间种一株,这样重种5株就可以啦。
师:刚才有4组采用了第三种方案该种的,这种方案确实比前两种方案要好,现在请你们说说是怎么发现这些株数不用重种的?
生:通过测量的方法发现的。还发现了6、12不仅是2的倍数同时也是3的倍数,所以觉得是2和3的公倍数就都不用动。
师:你们怎么想到“公倍数”这么个好听的名字的?
生:我们前面学习的`几个公有的因数叫公因数,最大的叫最大公因数。那现在两个公有倍数就叫公倍数,30是最大的就叫最大公倍数。
师:大家还有不同的意见吗?
生:(议论纷纷)这个不是最大的,还有更大的。。。。
师:确实如此,大家真能干!这节课我们就一起来探究这个问题。(出示课题:公倍数最小公倍数)
师:谁能用自己的话说一说什么叫公倍数
(几个数共有的倍数,叫做这几个数的公倍数)
这一个是最小的,我们又称它为什么
补充课题:最小公倍数谁能再来说一说什么叫最小公倍数
(其中最小的一个,叫做这几个数的最小公倍数)
今天我们就来研究公倍数与最小公倍数.
二、探究:
看了这个课题,你想在这节课中了解些什么请学生写在纸上,并贴到黑板上.
(为什么不求最大公倍数求最小公倍数有哪些方法 哪些情况下可以很快说出两个数的最小公倍数是几 等)
四人一组合作解决1~2个问题,举例说明,组长笔录.可以翻书请教,在P.69~71.
成果汇报:
(1)公倍数有多少个 (公倍数的个数是无限的,没有最大公倍数.)
(2)求最小公倍数的几种方法:
①枚举法:
根据学生举例填写集合圈并说出各部分所表示的内容:
②分解质因数:如:12与30的最小公倍数
12= 2 × 2 × 3
30= 2 × 3 × 5
60= 2 × 3 × 2 × 5
12独有的质因数 30独有的质因数
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积.
[12,30]=2×3×2×5=60
从这两个分解质因数的式子里你能看出12于30的最大公约数是几
最大公约数与最小公倍数之间有什么关系
(12= 6 × 2
30= 6 × 5
6 × 2 × 5 = 60)
最大公因数 各自独有的质因数
最小公倍数是两个数的最大公因数与各自独有质因数的乘积.
③短除法:如:36和45的最小公倍数
3 36 45 用公因数去除
3 12 15
4 5 除到商是互质数为止
[36,45]=3×3×4×5=180
讨论:与求最大公因数比较有什么异同之处
(相同处:都用公因数去除, 除到商是互质数为止.
不同处:求最大公因数只要把公有的质因数相乘,求最小公倍数还要乘以各自独有的质因数.)
短除法与分解质因数有什么联系
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20 65和130 4和15 18和24
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;
当两个数有倍数关系时,最小公倍数是较大的数.
4、总结:今天你们根据自己所提出的问题进行了研究学习,对于今天所学的内容还有什么疑问
《最小公倍数》教案9
设计说明
1.从学生已有的知识经验出发,促进知识的构建。
本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让学生对公倍数和最小公倍数产生感性的认识。利用最大公因数的知识迁移,让学生自己抽象出公倍数和最小公倍数的概念,从而激发学生的学习兴趣,激活学生的思维。
2.体现学生的主体地位,提高教学的实效性。
《数学课程标准》的理念倡导,要注重角色转变,改变在以往的教学中只注重对学生知识的传授,而忽略了学生的主观能动性,要让学生学会自主学习,让学生主动参与课堂教学,在教学中尊重学生,凸显学生的主体地位。本设计在教学如何找两个数的最小公倍数时,放手让学生自主探究出方法,并观察公倍数和最小公倍数之间的关系,让学生得到充分的思考,提高教学的实效性。
课前准备
教师准备 PPT课件 投影仪
学生准备 数轴卡片 彩色笔
教学过程
⊙复习旧知,引入新课
1.复习。
分别说一说4和6的倍数分别有哪些。
4的倍数 6的倍数
4 6
812
1218
1624
20xx
…………
2.导入。
师:我们分别列出了4的倍数和6的倍数。前面我们已经学过两个数公有的因数,今天来学习两个数公有的倍数。
设计意图:分别说出4和6的倍数,一是复习倍数知识,二是为学习公倍数和最小公倍数作铺垫,使学生的思维自然过渡到新知。
⊙公倍数与最小公倍数
1.探究概念。
(1)在数轴上表示数。
在数轴上分别找出表示4的.倍数和6的倍数的点。(学生观察数轴,用两种不同颜色的笔在数轴上分别描出这些点)
(2)观察数轴,交流发现。
4和6公有的倍数有哪些?最小的是几?有没有最大的?(学生口答后,老师在投影仪上表示出来)
(3)迁移命名。
想一想我们已经学过的公因数和最大公因数,谁能给几个公有的倍数和其中最小的一个取名字?(公倍数 最小公倍数)
(4)理解意义。
请说一说什么是公倍数和最小公倍数。(学生口答:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数)
(5)集合表示法。
课件出示教材68页的集合圈。为什么集合圈里要写上省略号?(一个数的倍数的个数是无限的,几个数的公倍数的个数也是无限的)
2.练习。(课件出示)
把不超过50的3和6的倍数、公倍数填在68页“做一做”中的集合圈里,再找出它们的最小公倍数。请一位同学板演,其他同学填在教材上,然后集体订正。
设计意图:通过引导学生对具体问题的进一步研究,帮助学生加深对公倍数、最小公倍数意义的理解,使表象更加清晰,由此让学生亲身经历一个从具体到抽象的教学过程。
⊙最小公倍数的求法
1.探究方法。
师:你是怎样求6和8的公倍数的?可以怎样表示?
(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。
(2)小组讨论,互相启发,再全班交流。
可能出现以下几种方法。
方法一 先分别写出6和8各自的倍数,再从中找出它们的公倍数和最小公倍数。
方法二 先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。
方法三 先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。
方法四 从小到大写出8的倍数,边写边判断是不是6的倍数,第一个6的倍数,就是6和8的最小公倍数。
《最小公倍数》教案10
教学内容:教科书五年级上册第81——82页及练习。
教学目标:
1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。
2、了解最小公倍数,学会用短除法求两个数的最小公倍数。
3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。
教学重点:学会用短除法求两个数的最小公倍数。
教学过程:
一、课前活动——对口令
师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。
2、对出一个数,它既是2的倍数也是3的倍数。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?
请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。
师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。
出示教材上的情境图。
师:从两个人的对话中了解到哪些数学信息?
生1:聪聪用了5/6小时。
生2:红红用3/4小时就打完了。
师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。
学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?
师:谁来说说是怎样比较的?谁打得快呢?
学生交流,教师进行板书。
生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
红红打得快。
生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。
师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?
学生可能有不同的表达方式,概括一下,应有如下回答:
●相同的地方
(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。
(2)两种方法通分时用的分母12和24都是6和4的公倍数。
教学预设
●不同的地方
(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。
(2)24是12的2倍。
……
师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的`同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。
学生自己找,教师巡视。
师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数
4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,
师:如果让你继续找下去,4的倍数还有没有?用什么表示?
生:还有无数个,用省略号表示。
生:6的倍数有:6,12,18,24,30,36,42,48,
师:如果让你继续找下去,6的倍数还有没有?用什么表示?
生:还有无数个,也用省略号表示。
生:然后找4和6的公倍数有:12,24,36,48,……。
教师根据学生的回答出示课件。
师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?
学生可能会说:
生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。
师:60后面还有没有?还有多少个?
生:还有无数个,用省略号表示。
师:有没有最大公倍数?
生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。
师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?
生:12。
师:还有比12小的公倍数吗?
生:没有了。
师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)
师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。
学生之间互相交流。
教师引导学生出概念(出示课件)让学生读一读。
师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)
用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。
板书设计:
《最小公倍数》教案11
教学目标
1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。
2、培养学生主动探究的意识和能力。
教学过程
(一)问题情境引入
师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?
(二)新课展开
1.建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示意图,也可由教师根据学生回答板书。
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、24天、30天、36天……
乙组经过:9天、18天、27天、36天、45天……
所以经过18天、36天……他们会再次相遇。
……
师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?
生:甲组、乙组经过的天数分别是6的倍数和9的倍数。
6的倍数:6、12、18、24、30、36……
9的倍数:9、18、27、36、45……
师:我们还可以用集合图来表示,师生共同画出:(图略)
师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?
生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。
(1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
(2)师:那么什么叫公倍数、最小公倍数?
学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)
师:有没有最大公倍数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的`公倍数还有54、72、90……无穷无尽。
3、用列举法求两个数的公倍数、最小公倍数,你能再找一找6和4的公倍数、最小公倍数吗?
4、做课本第54页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生叙述板书:
6的倍数有:6、12、18、24……
4的倍数有:4、8、12、16、20、24……
6和4的公倍数有:12、24……
6和4的最小公倍数是12。
(2)师生共同小结方法。
(3)练习:<1>完成课本练一练第2题。
<2>完成课本练一练第3题。
<3>完成课本练一练第4题。
<4>完成课本练一练第5题。
(三)课堂小结
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)
《最小公倍数》教案12
教学目标
(一)进一步理解并掌握最大公约数和最小公倍数的概念,分清求最大公约数和最小公倍数的相同点和不同点。
(二)培养学生仔细、认真的做题习惯和比较的思维方法。
(三)培养学生观察、分析、比较的能力。
教学重点和难点
最大公约数和最小公倍数异同点的比较。
教学用具
教具:小黑板,投影片。
学具:判断卡,选择卡。
教学过程设计
(一)复习准备
教师:
①什么叫最大公约数和最小公倍数?
②怎样求最大公约数和最小公倍数?
③求下面各题的最大公约数和最小公倍数?(口答)
8和 16 13和 26 2和 9 7和 15
教师:对上面几道题你是怎么想的?各有什么特点?你能发现什么规律?
明确:
①两个数有倍数关系,最大公约数最较小数,最小公倍数是较大数。
②两个数互质,最大公约数是1,最小公倍数是两个数乘积。
(二)学习新课
1.出示例5。
求28和42的最大公约数和最小公倍数。(要求学生独立完成。)
学生口述教师板书。
28和42的.最大公约数是:
2×7=14
28和42的最小公倍数是
2×7×2×3=84
教师:观察上面两道题,谁能说出求最大公约数和求最小公倍数有什么地方相同?什么地方不同?(讨论)
在讨论的基础上,总结出下面的结论。
教师:为什么求最大公约数只要把所有除数乘起来,而求最小公倍数就要把所有除数和商都乘起来呢?
明确:求最大公约数是两个数公有质因数的积;求最小公倍数既要包含两个数公有质因数,又要包括各自独有的质因数。
教师:既然求两个数的最大公约数和最小公倍数的短除过程是相同的,那么,我们就可以用一个短除式来表示。例5怎样做简便?(由学生完成。)
2.出示做一做。
根据下面的短除,你能很快说出24和36的最大公约数和最小公倍数吗?
(三)巩固反馈
1.求下面各组数的最大公约数和最小公倍数。
30和18 75和35 16和72
9和31 20和12 100和30
2.判断正误并说明理由。
①互质的两个数没有最大公约数;( )
②两个数的最小公倍数,是这两个数的最大公约数的倍数;( )
③12和8的最大公约数:2×2×3×2=24,最小公倍数:2×2=4;( )
④36和24的最大公约数:2×2=4,最小公倍数:2×2×9×6=216;( )
⑤17 和51。
17和51的最大公约数是17,最小公倍数是:17×51=867。( )
3.选择正确答案的序号填在( )里。
(1)已知甲、乙两个数互质,那么甲、乙最大公约数是( ),最小公倍数是( )。
①1 ②甲 ③乙 ④甲×乙
(2)已知a=2×3×2,b=2×3×5,那么a,b的最大公约数是( ),最小公倍数是( )。
①2×3
②2×3×2
③2×3×5
④2×3×2×5
4.思考题。
怎样用一个短除式求下面三个数的最大公约数和最小公倍数。
8,16和 24。
(四)课堂总结(学生总结)
1.求两个数的最大公约数,最小公倍数用一个短除式。
2.求最大公约数把所有的除数乘起来,求最小公倍数把所有的除数和商乘起来。
(五)布置作业:课本80页练习十六,3,4,5。
《最小公倍数》教案13
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。
(4)求三个数的的方法。
求三个数的与求两个数的的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的`质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
《最小公倍数》教案14
关键词:观察、分析、猜测、推理、验证与交流;自主探索、合作交流
内容:九年义务教育六年制小学教科书第十册P67-73求特殊情况下两个数的最大公约数和最小公倍数。
课堂实录:
一、复习:
1、求两个数的最大公约数和最小公倍数的方法各是什么?
2、求出每组数的最大公约数和最小公倍数(用短除法)
20和2436和5428和1413和40
[评析:复习用短除法求每组数的最大公约数和最小公倍数,体现了教学新旧知识的联系,又体现了知识的循序渐进。]
二、导入新课:
前面我们学习了用短除法来求两个数的最大公约数和最小公倍数,那么是不
是对所有求两个数的最大公约数和最小公倍数的题都要用短除法呢?这就是我们本节课所要研究的内容————求特殊情况下两个数的最大公约数和最小公倍数(板书课题)。
[评析:学源于思,思源于疑,人类思维活动往往是由于解决当前面临的问题而引发的。因此,设置疑问导入新课,能激发学生的好奇心,引起学生的求知欲,开拓学生的思路,使学生兴趣盎然地去探求知识。]
三、新授:
1、电脑出示下面几组数,让学生判断每组数成什么关系?
7和218和912和3614和19
生:7和21,12和36,成倍数关系;8和9,14和19成互质关系。
师:那么成互质关系或倍数关系的两个数的最大公约数和最小公倍数不用短
除法大家能很快求出来吗?
生:能
生:不能
生:能
师:下面我们共同来研究一下,看哪些同学说的对。
师:请分别找出8,9的约数和倍数。韩晓斌严春花
学生回答完后电脑出示:
8的约数:1,2,4,8
9的约数:1,3,9
8的倍数:8,16,24,32,40,48,56,64,72,80,88,96……
9的倍数:9,18,27,36,45,54,63,72,81……
师:请同学们先找出8和9的最大公约数,再找出它们的最小公倍数。
生:8和9的最大公约数是1。
生:8和9的最小公倍数是72。
师:请同学们再观察8,9,72这三个数之间有什么关系?
生:8和9都是72的约数。
生:72是8的倍数,也是9的倍数。
生:8×9=72,即:72是8和9的乘积。
师:大家都说得对,但是,有一位同学观察得更仔细,思考得更认真,他发现72是8和9的乘积,而72是8和9的最小公倍数,也就是说8和9的最小公倍数是它们的什么?
生:8和9的最小公倍数是它们的乘积。
师:又因为8和9成互质关系,那么我们从中能得出什么呢?
生:成互质关系的两个数的最小公倍数是它们的`乘积。
师:那么是不是所有成互质关系的两个数的最小公倍数都是它们的乘积呢?
师:写出几组成互质关系的两个数,让学生自己去验证(师边巡视边低声指导)。
例如:7和94和53和5
最后讨论得出:如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
师:我们还知道8和9的最大公约数是1,下面请同学们联系前面那个结论的推导过程,想一想,然后分组讨论,看从这句话中能得到什么?
生:成互质关系的两个数的最大公约数是1。
同样让学生自己验证,最后讨论得出:
如果两个数是互质数,它们的最大公约数就是1。
2、请同学们分别找出7、21的约数和倍数。
学生回答完后电脑出示:
7的约数:1,7
21的约数:1,3,7,21
7的倍数:7,14,21,28,35,42……
21的倍数:21,42,63……
师:下面请同学们先找出7和21的最大公约数,再找出它们的最小公倍数。
生:7和21的最大公约数是7。
生:7和21的最小公倍数是21。
师:请同学们观察7和21的最大公约数和最小公倍数,再和原数进行对照,
想一想,有什么规律?
生:7和21的最大公约数和最小公倍数就是这两个数。
生:7和21的最大公约数和最小公倍数分别是这两个数当中的一个。
生:7和21的最大公约数和最小公倍数与这两个数有关系,即:7和21的最大公约数是这两个数中的较小数7,它们的最小公倍数是这两个数中的较大数21。
对
生:因为7和21成倍数关系,所以,成倍数关系的两个数的最大公约数是这两个数中的较小数,它们的最小公倍数是这两个数中的较大数。
生:求成倍数关系的两个数的最大公约数和最小公倍数时,大小,
对
小大。
这时,学生们的思维都非常活跃,而且回答的内容逐渐趋向完整、准确,此时,教师让学生们根据以上同学的回答,看哪个更加完整、准确,如何概括成一句简练的话?
这样,经过学生们的分组讨论,轻而易举的就得出了结论:如果两个数成倍数关系,那么它们的最大公约数就是两个数中的较小数;它们的最小公倍数就是两个数中的较大数。
同时,让学生自己举例验证得出的结论是否正确。
最后让学生打开课本,阅读完书上的结论后进行比较,看与自己总结的是否一样,进而分享由自己的劳动成果所带来的喜悦。
[评析:以学生的观察、分析、猜测、推理、验证与交流为认知结构,把抽象的数学知识具体化,从而激发了学生的求知欲和学习情趣。通过学生自主探索合作交流,真正理解和掌握了求特殊情况下两个数的最大公约数和最小公倍数的方法,同时获得了更为广泛的数学活动经验。]
四、反馈练习:
很快说出每组数的最大公约数和最小公倍数。
9和367和1329和3013和5236和725和17
[评析:通过反馈练习,不仅能锻炼学生的观察、思维、判断、表达等能力,而且无形当中也就提高了学生运用所学的数学知识和方法解决一些简单问题的能力。]
五、总结:
你有什么感想和收获?
[评析:总结的设计,是本课教学的升华。在此,教师给学生提供了一个充分动脑、动口、表现自我的平台,不仅是所学知识的反馈,更是有效地促进数学课中学生口语表达的训练。]
六、作业:(略)
教学反思:
数学教学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有利于学生自主学习、合作交流的情境,使学生通过观察、分析、归纳、类比、猜测、交流、反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣。所以,我在教学“求特殊情况下两个数的最大公约数和最小公倍数”这一课时,充分发挥了学生的主体作用,促使学生自主探索、合作交流,挖掘学生的思维潜能,培养学生的观察、分析、归纳、猜测、推理、交流能力,真正让学生学会思考,学会学习。
学习任何知识的最佳途径是由自己去发现,因为这种发现最容易被理解,也最容易被掌握。因此,整堂课我始终以学生的活动为主,让学生自己去发现其中的规律和联系,我只是适当点拨、引导而已。显然,课堂气氛非常活跃,学生在快乐的气氛中轻松地学到了知识,发展了能力,同时也获得了成功的体验。
反思本课教学,最大的启示是:在数学课堂教学中,只要我们转变教学观念,以学生为主体,充分调动学生的学习积极性,使之主动参与到学习过程中,就能提高课堂教学效率,使人人有所得,个个有收获。
教学需改进之处———进一步处理好师生之间“教”与“学”的互动关系,充分发挥教师的“主导性”和学生的“主体性”作用,彻底改变习以为常的传统教学观念,为培养出数量多、素质高、能力强的跨世纪人才拼搏奋进!
《最小公倍数》教案15
教材分析
该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“最大公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
学情分析
五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。
教学目标
(体现多维目标;体现学生思维能力培养)
(1)让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
(2)让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
(3)渗透集合思想,培养学生的抽象概括能力
重点、难点
重点:公倍数与最小公倍数的概念建立。
难点:运用“公倍数与最小公倍数”解决生活实际问题
教法、学法
为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。
教 学 流 程
媒体运用
任务导学
明确
任务
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。
课堂探究
自主
学习
1、出示例1
师:同学们,仔细读要求,你们认为解决这个问题要注意什么?
生独立思考,领会题意和要求。
出示
合作
探究
2、合作交流,动手操作
我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。
3、汇报交流
师板书:2的倍数:2、4、6、8、10、12、14……
3的倍数:3、6、9、12、15、18……
2和3的`公倍数:6、12、24……
交流
展示
4、明确意义
师提出问题:为什么不能铺成边长是4厘米或9厘米的正方形?除了能铺成边长是6厘米的正方形之外,还可以铺成边长是多少厘米的正方形?最小是多少厘米?你发现能铺成的正方形的边长有什么特点?
(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)
师:通过刚才的报数和铺正方形的过程,现在谁能用自己的话说说什么是公倍数和最小公倍数?在韦恩图上怎么表示?
5、找最小公倍数
师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。
汇报交流:
师:请找到最多的同学说一说,你有什么好方法介绍给大家。
4、发现特殊关系的两个数的最小公倍数的特点
师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)
得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;
两个数是倍数关系的,它们的最小公倍数就是较大的那个数。
如果以后让你找两个数的最小公倍数,你会怎么做?
反馈拓展
拓展
提升
13和2()1000和25()
18和6()8和9()
1和12()9和15()
2、师:运用公倍数的知识,可以解决许多生活中的实际问题。一天周老师和一位乐清的同学在温州参加完同学会之后,第二天要赶回来上班,从温州新南站我们了解到以下一些信息:
师:为了能同时出发,你认为周老师该选择哪些时间出发?
3、求三个数的公倍数
总结:
这节课我们学习了什么?你有什么收获?
评价
检测
【《最小公倍数》教案】相关文章:
《最小公倍数》教案05-17
最小公倍数教学教案12-18
《公倍数、最小公倍数》教学反思09-02
艺术教案中班教案03-27
幼儿教案音乐教案05-31
小班美术教案捕鱼教案09-02
小班教案起床啦教案03-29
教案小班教案《胡椒小猪》02-11
拼音a教案大班教案参考06-08
7的分解教案大班教案09-03