勾股定理教案

时间:2024-11-05 16:43:16 教案 我要投稿

【荐】勾股定理教案15篇

  作为一位优秀的人民教师,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们应该怎么写教案呢?以下是小编收集整理的勾股定理教案,欢迎阅读与收藏。

【荐】勾股定理教案15篇

勾股定理教案1

  重点、难点分析

  本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

  本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

  教法建议:

  本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

  (1)让学生主动提出问题

  利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

  (2)让学生自己解决问题

  判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

  (3)通过实际问题的解决,培养学生的数学意识.

  教学目标:

  1、知识目标:

  (1)理解并会证明勾股定理的逆定理;

  (2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

  (3)知道什么叫勾股数,记住一些觉见的勾股数.

  2、能力目标:

  (1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

  (2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

  3、情感目标:

  (1)通过自主学习的发展体验获取数学知识的感受;

  (2)通过知识的.纵横迁移感受数学的辩证特征.

  教学重点:勾股定理的逆定理及其应用

  教学难点:勾股定理的逆定理及其应用

  教学用具:直尺,微机

  教学方法:以学生为主体的讨论探索法

  教学过程:

  1、新课背景知识复习(投影)

  勾股定理的内容

  文字叙述(投影显示)

  符号表述

  图形(画在黑板上)

  2、逆定理的获得

  (1)让学生用文字语言将上述定理的逆命题表述出来

  (2)学生自己证明

  逆定理:如果三角形的三边长 有下面关系:

  那么这个三角形是直角三角形

  强调说明:(1)勾股定理及其逆定理的区别

  勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

  (2)判定直角三角形的方法:

  ①角为 、②垂直、③勾股定理的逆定理

  2、 定理的应用(投影显示题目上)

  例1 如果一个三角形的三边长分别为

  则这三角形是直角三角形

  例2 如图,已知:CD⊥AB于D,且有

  求证:△ACB为直角三角形。

  以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

  4、课堂小结:

  (1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

  (2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

  5、布置作业:

  a、书面作业P131#9

  b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

  求证:△DEF是等腰三角形

勾股定理教案2

  教学目标:

  一知识技能

  1.理解勾股定理的逆定理的证明方法和证明过程;

  2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

  二数学思考

  1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

  2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

  三解决问题

  通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

  四情感态度

  1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

  2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

  教学重难点:

  一重点:勾股定理的逆定理及其应用.

  二难点:勾股定理的逆定理的证明.

  教学方法

  启发引导分组讨论合作交流等。

  教学媒体

  多媒体课件演示。

  教学过程:

  一复习孕新,引入课题

  问题:

  (1) 勾股定理的内容是什么?

  (2) 求以线段ab为直角边的直角三角形的斜边c的长:

  ① a=3,b=4

  ② a=2.5,b=6

  ③ a=4,b=7.5

  (3) 分别以上述abc为边的三角形的形状会是什么样的'呢?

  二动手实践,检验推测

  1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

  学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.

  教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的

  2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

  3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

  三探索归纳,证明猜想

  问题

  1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

  2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

  3.如图18.2-2,若△ABC的三边长

  满足

  ,试证明△ABC是直角三角形,请简要地写出证明过程.

  教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.

  四尝试运用,熟悉定理

  问题

  1例1:判断由线段

  组成的三角形是不是直角三角形:

  (1)

  (2)

  2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

  教师巡视,了解学生对知识的掌握情况.

  特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

  五类比模仿,巩固新知

  1.练习:练习题13.

  2.思考:习题18.2第5题.

  部分学生演板,剩余学生在课堂练习本上独立完成.

  小结梳理,内化新知

  六1.小结:教师引导学生回忆本节课所学的知识.

  2.作业:

  (1)必做题:习题18.2第1题(2)(4)和第3题;

  (2)选做题:习题18.2第46题.

勾股定理教案3

  教师活动:以中国最早的一部数学著作——《周髀算经》的开头为引,介绍

  周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔.周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度.夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五.既方其外,半之一矩,环而共盘.得成三、四、五,两矩共长二十有五,是谓积矩.故禹之所以治天下者,此数之所由生也.”提问:你听说过“勾股定理”吗?

  毕达哥拉斯是古希腊著名的数学家.相传在25以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.

  (1)现在请你也观察一下,你能有什么发现吗?

  (2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

  (3)你有新的结论吗?

  [活动2]教师引导学生总结:

  等腰直角三角形的两条直角边平方的`和等于斜边的平方.在独立探究的基础上,学生分组交流.教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.

  学生活动:每组派代表分别自己总结的观点,在教师的引导下,慢慢发现能否将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来;用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.

  在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.你见过这个图案吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”

勾股定理教案4

  课题:“勾股定理”第一课时

  内容:教材分析、教学过程设计、设计说明

  一、教材分析

  (一)教材所处的地位

  这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)根据课程标准,本课的教学目标是:

  1、能说出勾股定理的内容。

  2、会初步运用勾股定理进行简单的计算和实际运用。

  3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。

  4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

  (三)本课的教学重点:探索勾股定理

  本课的教学难点:以直角三角形为边的正方形面积的计算。

  二、教法与学法分析:

  教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。

  学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

  三、教学过程设计

  (一)提出问题:

  首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的'过程。

  (二)实验操作:

  1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。

  3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。

  (三)归纳验证:

  1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。

  2、验证为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。

  (四)问题解决:

  让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。

  (五)课堂小结:

  主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。

  (六)布置作业:

  课本P6习题1.11,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。

  四、设计说明

  1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

  2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。

  3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。

  4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。

勾股定理教案5

  一、内容和内容解析

  1。内容

  应用勾股定理及勾股定理的逆定理解决实际问题。

  2。内容解析

  运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

  基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

  二、目标和目标解析

  1。目标

  (1)灵活应用勾股定理及逆定理解决实际问题。

  (2)进一步加深性质定理与判定定理之间关系的认识。

  2。目标解析

  达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

  目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

  三、教学问题诊断分析

  对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

  本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

  四、教学过程设计

  1。复习反思,引出课题

  问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

  师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

  追问:你能用勾股定理及逆定理解决哪些问题?

  师生活动:学生通过思考举手回答,教师板书课题。

  【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

  2。 点击范例,以练促思

  问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

  追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

  师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的`路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

  追问2:你能根据题意画出图形吗?

  师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

  追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

  师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

  解:根据题意,

  因为

  ,即

  ,所以

  由“远航”号沿东北方向航行可知

  。因此

  ,即“海天”号沿西北方向航行。

  课堂练习1。 课本33页练习第3题。

  课堂练习2。 在

  港有甲、乙两艘渔船,若甲船沿北偏东

  方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

  岛,乙船到达

  岛,且

  岛与

  岛相距17海里,你能知道乙船沿哪个方向航行吗?

  【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

  3。 补充训练,巩固新知

  问题3 实验中学有一块四边形的空地

  若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

  师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

  【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  4。 反思小结,观点提炼

  教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

  (1)知识总结:勾股定理以及逆定理的实际应用;

  (2)方法归纳:数学建模的思想。

  【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

  5。布置作业

  教科书34页习题17。2第3题,第4题,第5题,第6题。

  五、目标检测设计

  1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

  A。南北 B。东西 C。东北 D。西北

  【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

  2。甲、乙两船同时从

  港出发,甲船沿北偏东

  的方向,以每小时9海里的速度向

  岛驶去,乙船沿另一个方向,以每小时12海里的速度向

  岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

  两岛相距45海里,那么乙船航行的方向是南偏东多少度?

  【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

  3。如图是一块四边形的菜地,已知

  求这块菜地的面积。

  【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案6

  教学目标

  知识与技能:

  了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

  过程与方法:

  在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

  情感态度价值观:

  通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

  教学过程

  1、创设情境

  问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

  师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

  设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

  2、探究勾股定理

  观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

  问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

  师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

  追问:由这三个正方形的边长构成的'等腰直角三角形三条边长之间又有怎么样的关系?

  师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

  设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

  问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

  师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

勾股定理教案7

  教学目标

  1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

  2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。

  3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

  教学重点

  了解勾股定理的由来,并能用它来解决一些简单的问题。

  教学难点

  勾股定理的探究以及推导过程。

  教学过程

  一、创设问题情景、导入新课

  首先出示:投影1(章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

  出示课件观察后回答:

  1、观察图1—2,正方形A中有_______个小方格,即A的面积为______个单位。

  正方形B中有_______个小方格,即B的面积为______个单位。

  正方形C中有_______个小方格,即C的面积为______个单位。

  2、你是怎样得出上面的结果的?

  3、在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C面积之间有什么关系?学生交流后得到结论:A+B=C。

  二、层层深入、探究新知

  1、做一做

  出示投影3(书中P3图1—3)

  提问:(1)图1—3中,A,B,C之间有什么关系?(2)从图1—2,1—3中你发现什么?

  学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

  2、议一议

  图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

  (1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

  (2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?

  3、想一想

  我们常见的电视的尺寸:29英寸(74厘米)的`电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

  三、巩固练习。

  1、在图1—1的问题中,折断之前旗杆有多高?

  2、错例辨析:△ABC的两边为3和4,求第三边

  解:由于三角形的两边为3、4

  所以它的第三边的c应满足

  =25即:c=5辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C是斜边。

  综上所述这个题目条件不足,第三边无法求得

  四、课堂小结

  鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

  五、布置作业

勾股定理教案8

  一、回顾交流,合作学习

  【活动方略】

  活动设计:教师先将学生分成四人小组,交流各自的小结,并结合课本P87的小结进行反思,教师巡视,并且不断引导学生进入复习轨道.然后进行小组汇报,汇报时可借助投影仪,要求学生上台汇报,最后教师归纳.

  【问题探究1】(投影显示)

  飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,问:飞机飞行了多少千米?

  思路点拨:根据题意,可以先画出符合题意的图形,如右图,图中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飞机这时飞行多少千米,就要知道飞机在20秒时间里飞行的路程,也就是图中的BC长,在这个问题中,斜边和一直角边是已知的,这样,我们可以根据勾股定理来计算出BC的长.(3000千米)

  【活动方略】

  教师活动:操作投影仪,引导学生解决问题,请两位学生上台演示,然后讲评.

  学生活动:独立完成“问题探究1”,然后踊跃举手,上台演示或与同伴交流.

  【问题探究2】(投影显示)

  一个零件的形状如右图,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗?为什么?

  思路点拨:要检验这个零件是否符合要求,只要判断△ADB和△DBA是否为直角三角形,这样可以通过勾股定理的`逆定理予以解决:

  AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,这个零件符合要求.

  【活动方略】

  教师活动:操作投影仪,关注学生的思维,请两位学生上讲台演示之后再评讲.

  学生活动:思考后,完成“问题探究2”,小结方法.

  解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

  ∴△ABD为直角三角形,∠A=90°.

  在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

  ∴△BDC是直角三角形,∠CDB=90°

  因此这个零件符合要求.

  【问题探究3】

  甲、乙两位探险者在沙漠进行探险,某日早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙两人相距多远?

  思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)

  【活动方略】

  教师活动:操作投影仪,巡视、关注学生训练,并请两位学生上讲台“板演”.

  学生活动:课堂练习,与同伴交流或举手争取上台演示

勾股定理教案9

  一、教学目标

  【知识与技能】

  理解并掌握勾股定理的逆定理,会应用定理判定直角三角形;理解勾股定理与勾股定理逆定理的区别与联系;理解原命题和逆命题的概念,知道二者的关系及二者真假性的关系。

  【过程与方法】

  经历得出猜想、推理证明的`过程,提升自主探究、分析问题、解决问题的能力。

  【情感、态度与价值观】

  体会事物之间的联系,感受几何的魅力。

  二、教学重难点

  【重点】勾股定理的逆定理及其证明。

  【难点】勾股定理的逆定理的证明。

  三、教学过程

  (一)导入新课

  复习勾股定理,分清其题设和结论。

  提问学生画直角三角形的方法(可用尺类工具),然后要求不能用绳子以外的工具。

  出示古埃及人利用等长的3、4、5个绳结间距画直角三角形的方法,以其中蕴含何道理为切入点引出课题。

  (二)讲解新知

  请学生思考3,4,5之间的关系,结合勾股定理的学习经验明确

  出示数据2.5cm,6cm,6.5cm,请学生计算验证数据满足上述平方和关系,并画出相应边长的三角形检验是否为直角三角形。

  学生活动:同桌两人一组,将三边换成其他满足上述平方和关系的数据,如4cm,7.5cm,8.5cm,画出相应边长的三角形检验是否为直角三角形。

勾股定理教案10

  在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标、

  一、课程改革前对勾股定理的教学

  (一)教学目标

  1、使学生掌握勾股定理、

  2、使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长

  (二)教学内容

  1、关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”

  2、给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2

  3、用拼图法推证勾股定理、

  4、勾股定理的应用:解决几何计算、作图及实际生产、生活的问题、

  二、课程改革后对勾股定理的教学

  (一)教学目标

  1、认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示、通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程

  2、能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法

  3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣

  (二)教学内容

  1、在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境)

  2、由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方

  3、勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智

  4、探讨利用拼图法验证勾股定理、

  5、勾股定理的实际应用、

  三、两种课堂教学的对比

  (一)教学理念和教学内容的不同

  课改前传统的勾股定理的教学,重在掌握定理和应用定理、这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的记忆定理、被动认知和机械训练变形及运算技能的过程、这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”

  课改后勾股定理的教学从以下几方面进行:

  1、创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律

  2、拼图验证定理——用数形结合的方法支持定理的认识

  3、构建数学模型——学生体验由特例归纳猜想、由特例检验猜想

  4、解决实际问题——熟练掌握定理,并形成运用定理的技能

  5、勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情

  站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强、这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容、不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易

  (二)教师备课内容的不同

  教改前对勾股定理的备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整、例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法、

  定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望、一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺、每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的一条鱼,它们立刻飞去抓鱼,并且同时到到目标、问:这条鱼出现的地方离较高的树的树根有多远?

  在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学、由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错、

  教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次、

  为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行

  (三)学生学习方式的.不同

  对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式、这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如、但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象

  很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活、经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性、这不仅是社会发展的需要,同时也是促进学生自身发展的需要、学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣、利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展

  (四)教学效果的不同(见下表)

  四、两种教学对比研究的结论

  (一)新课程前后的教学各有优势与不足(见下表)

  (二)新课程中几何教学需要注意的几个方面

  1、探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释

  2、学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣、例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识、

  3、避免合作学习流于形式

  (1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展

  (2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任

  (3)及时协调组内成员间的关系,有效解决组内出现的不利问题

  (4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径

  4、要注重教学活动目标的整体实现、新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡、为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标

  5、不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握、基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体、数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系

  6、重视合情推理及演绎推理的教学和训练、推理教学要转变并贯穿于数学教学的始终、教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力、对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明、当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力

勾股定理教案11

  复习第一步::

  勾股定理的有关计算

  例1:(2006年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

  析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

  勾股定理解实际问题

  例2.(2004年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

  析解:彩旗自然下垂的长度就是矩形DCEF

  的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂时的最低处离地面的最小高度h为70cm

  与展开图有关的计算

  例3、(2005年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

  析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

  在矩形ACC’A’中,因为AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴从顶点A到顶点C’的最短距离为

  复习第二步:

  1.易错点:本节同学们的'易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

  例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

  错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

  正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

  例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

  错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

  剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

  正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

  温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

  例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

  错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

勾股定理教案12

  教学课题:

  勾股定理的应用

  教学时间

  (日期、课时)

  教材分析

  学情分析

  教 学目标:

  能运用勾股定理及直角三角形的判定条件解决实际问题。

  在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

  教学准备

  《数学学与练》

  集体备课意见和主要参考资料

  页边批注

  教学过程

  一、 新课导入

  本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

  一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 。

  创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的`生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。

  二、新课讲授

  问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?

  组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。

  问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。

  设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、

  3、例题教学

  课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的'讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、

  三、巩固练习

  1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

  2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )。

  (A)20cm (B)10cm (C)14cm (D)无法确定

  3、如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求这块草坪的面积。

  四、小结

  我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。

勾股定理教案13

  一、例题的意图分析

  例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

  例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  二、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

  三、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR-∠QPS=45°。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的.长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

  解略。

  四、课堂练习

  1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

  3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

勾股定理教案14

  能运用勾股定理及直角三角形的判别条件解决简单的实际问题.

  勾股定理及直角三角形的判别条件的运用.

  直角三角形模型的建立.

  一.课前复习

  勾股定理及勾股定理逆定理的区别

  二.新课学习

  探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

  1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

  思考:

  1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

  这样的线路有几条?可分为几类?

  2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

  A点到B点的最短路线是什么?你是如何画的?

  1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

  4.你是如何将这个实际问题转化为数学问题的?

  小结:

  你是如何解决圆柱体侧面上两点之间的最短距离问题的?

  探究点二:利用勾股定理逆定理如何判断两线垂直?

  1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,但他随身只带了卷尺。(参看P13页雕塑图1-13)

  (1)你能替他想办法完成任务吗?

  1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

  (3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

  探究点三:利用勾股定理的方程思想在实际问题中的应用

  例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.

  1.3

  思考:

  1.求滑道AC的长的问题可以转化为什么数学问题?

  2.你是如何解决这个问题的?写出解答过程。

  小结:

  方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.

  四.课堂小结:本节课你学到了什么?

  三.新知应用

  1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  1.3

  2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()

  1.3

  五.作业布置:习题1.41,3,4题

  一、教师我的体会:

  ①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的'学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

  把教材读薄,②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

  ③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

  ④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

  二、学生体会:

  课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的"思维能力。

  不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理教案15

 一、利用勾股定理进行计算

  1.求面积

  例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。

  析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。

  2.求边长

  例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。

  析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。

  二、利用勾股定理的逆定理判断直角三角形

  例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。

  析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的`关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

  三、利用勾股定理说明线段平方和、差之间的关系

  例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。

  析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

【勾股定理教案】相关文章:

勾股定理教案05-30

勾股定理教案(经典)07-14

勾股定理教案人教版07-23

勾股定理教案【精品15篇】07-06

幼儿教案音乐教案05-31

艺术教案中班教案01-08

元日教案 《元日》教案优秀09-08

拼音a教案大班教案参考06-08

小班教案起床啦教案11-17