勾股定理教案

时间:2024-07-06 06:56:16 教案 我要投稿

勾股定理教案【精品15篇】

  作为一名老师,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。那么大家知道正规的教案是怎么写的吗?下面是小编整理的勾股定理教案,仅供参考,欢迎大家阅读。

勾股定理教案【精品15篇】

勾股定理教案1

  教学目标

  1、知识与技能目标

  用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用.

  2、过程与方法

  让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系.

  3、情感态度与价值观

  在探索勾股定理的过程中,体验获得成功的快 乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久化的思想,激励学生发奋 学习.

  教学重点了结勾股定理的由,并能用它解决一些简单的问题。

  教学难点:勾股定理的发现

  教学准备:多媒体

  教学过程:

  第一环节:创设情境,引入新(3分钟,学生观察、欣赏)

  内容:20xx年世界数学家大会在我国北京召开,

  投影显示本届世界数学家大会的会标:

  会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”

  的图作为与“外星人”联系的信号.今天我们就一同探索勾股定理.(板书 题)

  第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)

  1.探究活动一:

  内容:(1)投影显示如下地板砖示意图,让学生初步观察:

  (2)引导学生从面积角度观察图形:

  问:你能发现各图中三个正 方形的面 积之间有何关系吗?

  学生通过观察,归纳发现:

  结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

  2.探究 活动二:

  由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

  (1)观察下面两幅图:

  (2)填表:

  A 的面积

  (单位面积)B的面积

  (单位面积)C的面积

  (单位面积)

  左图

  右图

  (3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)

  (4)分析填表的数据,你发现了什么?

  学生通过分析数据,归纳出:

  结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

  3.议一议:

  内容:(1)你能用直角三角形的边长 、 、 表示上图中正方形的面积吗?

  (2)你能发现直角三角形三边长度之间存在什么关系吗?

  (3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的`规律对这个三角形仍然成立吗?

  勾股定理(gou-gu theorem):

  如果直角三角形两直角边长分别为 、 ,斜边长为 ,那么即直角三角形两直角边的平方和等于斜边的平方.

  数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.

  第三环节: 勾股定理的简单应用(7分钟,学生合作探究)

  内容:

  例 如图所示,一棵大树在一次强烈台风中于离

  地面10m处折断倒下,

  树顶落在离树根24m处. 大树在折断之前高多少?

  (教师板演解题过程)

  第四环节:巩 固练习(10分钟,学生先独立完成,后全班交流)

  1、列图形中未知正方形的面积或未知边的长度:

  2、生活中的应用:

  小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?

  第五环节:堂小结(3分钟,师生对答,共同总结)

  内容:教师提问:

  1.这一节我们一起学习了哪些知识和思想方法?

  2.对这些内容你有什么体会?请与你的同伴交流.

  在学生自由发言的基础上,师生共同总结:

  1.知识:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 .

  2.方法:① 观察—探索—猜想—验证—归纳—应用;

  ② 面积法;

  ③ “割、补、拼、接”法.

  3.思想:① 特殊—一般—特殊;

  ② 数形结合思想.

  第六 环节:布置作业(2分钟,学生分别记录)

  内容:

  作业:1.教科书习题1.1;

  2.《读一读》——勾股世界;

  3.观察下图,探究图中三角形的三边长是否满足 .

  要求:A组(学优生):1、2、3

  B组(中等生):1、2

  C组(后三分之一生):1

  板书设计:见电子屏幕

  教学反思:

勾股定理教案2

  在数学课程改革中,基于对数学课程标准基本理念的理解,我从多个方面、不同的角度将课改前后勾股定理的教学进行了对比与研究,以求从中明晰在今后的教学中亟待解决的问题,更加靠近课程改革的具体目标、

  一、课程改革前对勾股定理的教学

  (一)教学目标

  1、使学生掌握勾股定理、

  2、使学生能够熟练地运用勾股定理,由已知直角三角形中的两条边长求出第三条边长

  (二)教学内容

  1、关于勾股定理的数学史:《周髀算经》中出现的“勾广三,股修四,径隅五”

  2、给出勾股定理:直角三角形两直角边a,b的平方和,等于斜边c的平方,即a2 + b2 = c2

  3、用拼图法推证勾股定理、

  4、勾股定理的应用:解决几何计算、作图及实际生产、生活的问题、

  二、课程改革后对勾股定理的教学

  (一)教学目标

  1、认知目标:掌握直角三角形三边之间的数量关系,学会用符号表示、通过数格子及割补等办法探索勾股定理的形成过程,使学生体会数形结合的思想,体验从特殊到一般的逻辑推理过程

  2、能力目标:发展学生的合情推理能力,主动合作、探究的学习精神,感受数学思考过程的条理性,让学生经历“观察—猜想—归纳—验证”的数学思想,并感受数形结合和由特殊到一般的思想方法

  3、情感目标:通过数学史上对勾股定理的介绍,激发学生学数学、爱数学、做数学的情感,使学生在经历定理探索的过程中,感受数学之美、探究之趣

  (二)教学内容

  1、在方格纸上通过计算面积的方法探索勾股定理(或设计其他的探索情境)

  2、由学生通过观察、归纳、猜想确认勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2 + b2 = c2,即直角三角形两直角边的平方和等于斜边的平方

  3、勾股世界:介绍勾股定理的悠久历史、重大意义及古代人民的聪明才智

  4、探讨利用拼图法验证勾股定理、

  5、勾股定理的实际应用、

  三、两种课堂教学的对比

  (一)教学理念和教学内容的不同

  课改前传统的勾股定理的教学,重在掌握定理和应用定理、这种教学过分突出了勾股定理这一现成几何知识结论的传递和接受,忽略了定理的发现过程、发现方法,导致学生的学习过程被异化为被动接受和单纯的记忆定理、被动认知和机械训练变形及运算技能的过程、这种教学思想的弊病是“重结论而轻过程”,“厚知识运用而薄思想方法”

  课改后勾股定理的教学从以下几方面进行:

  1、创设探索性的问题情境——学生归纳出直角三角形三边之间的一般规律

  2、拼图验证定理——用数形结合的方法支持定理的认识

  3、构建数学模型——学生体验由特例归纳猜想、由特例检验猜想

  4、解决实际问题——熟练掌握定理,并形成运用定理的技能

  5、勾股定理数学史——激发学生的民族自豪感,点燃热爱数学的热情

  站在理论的角度,在这种设计中,使学生对知识的实际背景和对知识的直观感知以及学生对收集、整理、分析数学信息的能力等方面得以加强、这充分反映了以未来社会对公民所需的数学思想方法为主线选择和安排教学内容,并以与学生年龄特征相适应的大众化、生活化的方式呈现教学内容、不过,通过实际教学,要想真正的做到“以学生为本”,在短短的两课时内既要重点突出,又能不留死角地圆满完成以上五个层面的学习,也确属不易

  (二)教师备课内容的不同

  教改前对勾股定理的备课,在把握教材内容的同时,可在勾股定理的数学史和定理应用两方面加以调整、例如,增强民族自豪感:中国古代的大禹就是用勾股定理来确定两地的地势差,以治理洪水;激发学习兴趣:勾股定理的证明方法已有400多种,给出这些证明方法的不但有数学家、物理学家,还不乏政界要人,像美国第20任总统加菲尔德、印度国王帕斯卡拉二世,都通过构造图形的方法给出了勾股定理的别致证法、

  定理应用这一课时,教材从纯几何问题、生活问题、生产问题等几方面均有涉及,从提高学生兴趣方面可灵活补充一道11世纪阿拉伯数学家给出的一道趣味题:小溪边长着两棵树,隔岸相望、一棵树高30肘尺(古代长度单位),另一棵高20肘尺,两树的树干间的距离是50肘尺、每棵树的树顶上都停着一只鸟,两只鸟同时看见树间水面上游出的一条鱼,它们立刻飞去抓鱼,并且同时到到目标、问:这条鱼出现的地方离较高的'树的树根有多远?

  在实际教学中根据学生的理解情况及实际水平,在训练的形式、数量上与教材也有所区分:增加了一个随堂检测,以巩固所学、由于当时所教班级为数学班,学生整体接受能力较强,就设计了一个请学生自编有关勾股定理应用的题目,效果不错、

  教改后的备课,除了在上述两方面有所选择之外,重点放在了探索情境的设置上:利用下面图中的任何一个或几个都可从3个正方形的面积关系中得出直角三角形三边关系,不同的班级可由学生不同的认知水平来设计认识层次、

  为了保证教学重点,把利用拼图验证勾股定理的主要探讨放在专门的课题学习中进行

  (三)学生学习方式的不同

  对于课改前勾股定理的学习,学生沿袭着“接受定理——强化训练——回味体会”的方式、这在一定程度上增强了学生对定理的熟悉程度,并在定理应用上感到运用自如、但这种熟练仅仅是一种强化训练后的暂时现象,知识的本身及其迁移只保持在较短的时间内,不会给学习者留下长久的甚至是终生的印象

  很明显,课改后勾股定理的学习是从实际问题到数学问题,再回到实际问题的处理过程,学生眼中的勾股定理来源于熟悉的背景——正方形面积,又用于指导生产、生活、经常用数学的眼光来审视生活,从生活中发现数学,学生才会逐步具有“数学建模”的能力,才能逐步感悟生活的数学性、这不仅是社会发展的需要,同时也是促进学生自身发展的需要、学生学习过程中对定理的探求、现代信息技术的发现及验证过程无时不表现着其学习的主动性,定理的归纳、结论的自我认同又包含着合作与自由发展的和谐共鸣、利用课堂教学、利用教材培养学生良好的学习方式,便塑造了其良好的思维方式,促进了学生和谐、自由、全面、充分的发展

  (四)教学效果的不同(见下表)

  四、两种教学对比研究的结论

  (一)新课程前后的教学各有优势与不足(见下表)

  (二)新课程中几何教学需要注意的几个方面

  1、探究学习不是简单地布置学生去探究、去学习,教师要发挥主导作用,要让学生明确去探究什么,如何探究,要让学生的探究活动是有效的、有意义的新教材中的很大一部分可采用勾股定理的探究方式:向学生提供探索情境,提出能提供必需信息的问题——学生采用多种方式寻求问题的答案,获取信息——整理、归纳结论——设法验证或解释

  2、学生学习过程中的主动参与要在教师指导督促中形成,不能过高估计学生的意志、兴趣、例如,营造一种和谐、民主的课堂气氛来提高全体学生的参与兴趣;帮助学生制订分段式的小目标来增强其成就感,强化其参与意识、

  3、避免合作学习流于形式

  (1)坚持“组间同质,组内异质”的分组方式,以保证人人有所发展

  (2)教师要加强合作技能的指导,指导学生进行小组分工,要求明确各自在完成共同的任务中个人承担的责任

  (3)及时协调组内成员间的关系,有效解决组内出现的不利问题

  (4)正确评价组内成员的成绩,寻求个人和小集体共同提高的途径

  4、要注重教学活动目标的整体实现、新课程中注重对学生学习兴趣的培养、能力的提升,注重知识形成过程的教学,但对一些基本的训练有些淡化,导致整体教学目标不够均衡、为此,在勾股定理的教学中,不但要重过程、方法、能力,还要重视相关的计算和推理,并在计算和推理中学会数学思考,这样才能把“知识技能”、“数学思考”、“问题解决”、“情感态度”多方面教学目标有机结合,达到整体实现教学目标

  5、不能忽视双基的教学,要注重学生对基础知识、基本技能的理解和掌握、基础知识不但是学生发展的基础性目标,还是落实数学思想、方法、能力目标的载体、数学知识的教学,要注重知识的“生长点”与“延伸点”,把每堂课教学的知识置于整体知识的体系中,注重知识的结构和体系

  6、重视合情推理及演绎推理的教学和训练、推理教学要转变并贯穿于数学教学的始终、教学中,教师要设计适当的学习活动,引导学生通过观察、估算、归纳、类比、画图等活动发现一些规律,猜想某些结论,发展合情推理能力、对于几何的教学要加强演绎推理的教学训练,通过实例让学生认识到,结论的正确与否需要演绎推理的证明、当然,不同年级可提出不同的要求,但要慢慢加强,训练不断提高要求,最后形成较高的演绎推理能力

勾股定理教案3

 一、利用勾股定理进行计算

  1.求面积

  例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。

  析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为×BC×AD=×16×6=48cm2。

  2.求边长

  例2:如图2,在△ABC中,∠C=135?,BC=,AC=2,试求AB的长。

  析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。

  二、利用勾股定理的逆定理判断直角三角形

  例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。

  析解:由于所给条件是关于a,b,c的'一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

  三、利用勾股定理说明线段平方和、差之间的关系

  例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。

  析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

勾股定理教案4

  [设计背景]

  新课改下的数学教学要求“抓住数学本质、展示思维过程、落实主体地位”。根据这种课改精神,再来设计这节市级公开课的内容,我认为首先要培养学生的数学建模思想,让学生经历“问题情景—建立模型—解释应用与拓展”的过程,将实际问题转化为数学问题,进而归类为在直角三角形中利用勾股定理求线段长度的问题。对问题的选择也应尽可能是学生感兴趣和熟悉的。通过问题串来引导学生自己找到解决的方法,并且及时归纳总结方法,同时注意通过题组训练来巩固对思想方法的内化运用。为了培养学生的学习兴趣和探究意识,要给学生留有足够时间和空间来动手操作、小组交流、独立思考,同时还要多给学生展示自己数学潜质的机会。

  [教学过程]

  一、教学目标

  知识与技能:能进一步运用勾股定理解决简单的实际问题。

  过程与方法:在解决简单的实际问题中,感受数学建模、转化的思想方法。

  情感态度与价值观:让学生主动参与解决问题的过程,体会数学的应用价值。

  二、教学重点和难点

  重点:构造直角三角形,运用勾股定理解决问题。

  难点:根据已知和未知的关系,建构方程,解决实际问题。

  三、教学方法和手段

  主要采用启发引导、合作交流、演示反馈等教学方法,运用多媒体辅助教学。

  四、教学过程

  活动一:

  1.情境引入

  有一个圆柱状的透明玻璃杯,由内部测得其底部半径为3 cm,高为8 cm,今有一支12 cm长的吸管随意放在杯中。如果不考虑吸管的粗细,那么吸管露出杯口外的长度至少为 cm。

  2.学生活动

  用下面两个问题引导学生活动:

  (1)你是怎样解决这个问题的?

  (2)找出直角三角形后下一步应怎么办?

  3.数学建构(初步)

  (1)找出直角三角形;

  (2)运用勾股定理求线段的长度。

  设计意图:从学生感兴趣的情境入手,调动学生的积极性,让学生初步感知本节课所要学习的内容,从而引入课题。

  活动二:

  1.例题教学

  如图,一架长10 m的梯子AB斜靠在墙上。梯子的顶端距地面的垂直距离为8 m,如果梯子的顶端下滑1 m,那么它的底端是否也滑动1 m?

  ■

  (1)学生思考交流解题思路,教师规范解题格式。

  (2)变式:如果梯子的顶端下滑2 m,那么它的底端下滑了多少呢?(学生来完成并总结解题思路)

  设计意图:通过例题教学,引导学生分析如何将所求的线段转化在直角三角形中利用勾股定理来解决。通过教师的规范板书,让学生明确解题的书写格式。

  2.建构数学

  (1)实际问题数学问题构造直角三角形运用勾股定理解决线段长度计算问题解决数学问题解决实际问题。

  (2)实际问题数学问题解决数学问题解决实际问题。

  设计意图:数学建模思想是数学中的.一种重要思想方法,及时地归纳总结,让学生领会这种思想方法,对于自己数学学习是很有帮助的。

  3.数学应用

  (1)有两棵树,一棵高8 m,另一棵高2 m,两树相距8 m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少m?

  (2)如图,圆柱的高为5 cm,底面周长为2 cm,在圆柱下底面有一只蚂蚁,它从点A出发,沿着圆柱的表面爬行到对面的点B,它爬行的最短路程是 cm。

  设计意图:这两题的设计主要是让学生尝试构造直角三角形。第一题实际是把一个直角三角形的问题转化为一个矩形和一个直角三角形。而第二题的目的是为了让学生明白要研究立体图形的表面问题,就要将立体图形的表面展开,转化为平面图形来研究。这两题都涉及了初一所学的“两点之间线段最短”,丰富了问题的研究性和趣味性。

  活动三:

  1.拓展延伸

  在一次地震中,一棵20米高的大树被折断了,地震过后,测量了有关数据,测得树梢着地点到树根的距离为6米。这棵大树折断处离地面有多高?

  设计意图:本题是把实际问题转化为数学问题,构造出直角三角形。已知直角三角形的一边和另外两边的和。引导学生通过设未知数,根据勾股定理这个等量关系列出方程,渗透方程思想,进而求出未知线段的长度。

  2.回顾反思

  师生共同总结应用勾股定理解决简单实际问题的方法。

  活动四:

  1.当堂反馈

  (1)校园里有一块长方形的草地,长4 m,宽3 m,草地旁有路,但有个别同学偶尔会走“近路”,从草地上走。经过计算我们会发现这样只是少走 步而已(假如两步合1 m)。

  设计意图:此题的设计一方面是为了简单地利用勾股定理,另一方面是为了让学生有一个爱护花草树木的习惯,注意自己的举止文明,渗透德育教学。

  (2)已知,在ABC中,∠C=90°,AC=5 cm,BC=10 cm,将ABC折叠,使点B与点A重合,折痕为DE。求CD的长度。

  ■

  设计意图:此题的设计是检测折叠和利用勾股定理列方程的知识的运用。

  2.布置作业

  课本第68页第4、5题,第7页第14题。

  设计意图:作业主要是为了巩固本节课所学知识,最后一题是为了让学生探索研究在立体图形中构造出两个直角三角形,利用勾股定理求出线段的长度。

  [教学反思]

  一、增强应用意识,渗透数学建模思想

  数学与现实生活密不可分,数学无时不在我们身边,正如一位数学教育家所说:“数学是现实的,学生在现实生活中学习数学,再把学习的数学应用到现实中去。”从现实中寻找学习的素材,增强应用数学的意识,使学生感受数学就在我身边。本节课所选取的问题背景都是学生熟悉的情景,让学生体验解决身边问题的全过程,自己去研究探索,经历数学建模过程,提高应用数学的意识和用数学解决实际问题的能力。

  二、学会分析比只会解答更有效

  《义务教育数学课程标准》要求:能通过观察、实验、类比等获得数学猜想,进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。

  毕达哥拉斯曾说过:在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。可见分析问题能力的培养是多么重要。问题出示后,给学生足够的思考时间,适当采用合作交流的辅助方式,然后组织学生在课堂中交流自己的思考历程,并安排其他学生质疑与补充。这些措施的落实,能进一步拓宽学生分析问题能力的空间,提升学生的思维水平和思维层次。

  三、恰当评价,呵护学生的学习热情

  要彻底解决学生在教学中的主体地位。教师必须转变观念以学生的“学”为出发点,将“自主探究、合作交流”的学习方式贯穿于课的始终,并将评价与教师的教和学生的学有机地融为一体。教师以一个参与者的身份积极参与交流与评价,可以为学生大胆探索、积极交流,创设宽松的心理环境,营造民主、平等、和谐的课堂气氛。在我的课堂上学生经常是妙语连珠,积极发言,有时说错了,只要加以引导都能开心坐下来。学生学习的热情需要呵护。恰当地运用评价的激励与促进作用,可以充分激发和调动学生学习的积极性和主动性,进而获得理想的教学效果。

勾股定理教案5

  一、例题的意图分析

  例1(P83例2)让学生养成利用勾股定理的逆定理解决实际问题的意识。

  例2(补充)培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  二、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

  三、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR-∠QPS=45°。

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

  例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

  分析:⑴若判断三角形的形状,先求三角形的'三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

  解略。

  四、课堂练习

  1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

  2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

  3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

勾股定理教案6

  一、内容和内容解析

  1。内容

  应用勾股定理及勾股定理的逆定理解决实际问题。

  2。内容解析

  运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

  基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

  二、目标和目标解析

  1。目标

  (1)灵活应用勾股定理及逆定理解决实际问题。

  (2)进一步加深性质定理与判定定理之间关系的认识。

  2。目标解析

  达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

  目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

  三、教学问题诊断分析

  对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

  本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

  四、教学过程设计

  1。复习反思,引出课题

  问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

  师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

  追问:你能用勾股定理及逆定理解决哪些问题?

  师生活动:学生通过思考举手回答,教师板书课题。

  【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

  2。 点击范例,以练促思

  问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

  师生活动:学生读题,理解题意,弄清楚已知条件和需解决的'问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

  追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

  师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

  追问2:你能根据题意画出图形吗?

  师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

  追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

  师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

  解:根据题意,

  因为

  ,即

  ,所以

  由“远航”号沿东北方向航行可知

  。因此

  ,即“海天”号沿西北方向航行。

  课堂练习1。 课本33页练习第3题。

  课堂练习2。 在

  港有甲、乙两艘渔船,若甲船沿北偏东

  方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

  岛,乙船到达

  岛,且

  岛与

  岛相距17海里,你能知道乙船沿哪个方向航行吗?

  【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

  3。 补充训练,巩固新知

  问题3 实验中学有一块四边形的空地

  若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

  师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

  【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

  4。 反思小结,观点提炼

  教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

  (1)知识总结:勾股定理以及逆定理的实际应用;

  (2)方法归纳:数学建模的思想。

  【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

  5。布置作业

  教科书34页习题17。2第3题,第4题,第5题,第6题。

  五、目标检测设计

  1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

  A。南北 B。东西 C。东北 D。西北

  【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

  2。甲、乙两船同时从

  港出发,甲船沿北偏东

  的方向,以每小时9海里的速度向

  岛驶去,乙船沿另一个方向,以每小时12海里的速度向

  岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

  两岛相距45海里,那么乙船航行的方向是南偏东多少度?

  【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

  3。如图是一块四边形的菜地,已知

  求这块菜地的面积。

  【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案7

  学习目标

  1、通过拼图,用面积的方法说明勾股定理的正确性.

  2.探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

  重点难点

  或学习建议学习重点:用面积的方法说明勾股定理的正确.

  学习难点:勾股定理的应用.

  学习过程教师

  二次备课栏

  自学准备与知识导学:

  这是1955年希腊为纪念一位数学家曾经发行的邮票。

  邮票上的图案是根据一个著名的数学定理设计的。

  学习交流与问题研讨:

  1、探索

  问题:分别以图中的直角三角形三边为边向三角形外

  作正方形,小方格的面积看做1,求这三个正方形的面积?

  S正方形BCED=S正方形ACFG=S正方形ABHI=

  发现:

  2、实验

  在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的'面积。

  请完成下表:

  S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系

  112

  145

  41620

  91625

  发现:

  如何用直角三角形的三边长来表示这个结论?

  这个结论就是我们今天要学习的勾股定理:

  如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾

  练习检测与拓展延伸:

  练习1、求下列直角三角形中未知边的长

  练习2、下列各图中所示的线段的长度或正方形的面积为多少。

  (注:下列各图中的三角形均为直角三角形)

  例1、如图,在四边形中,∠,∠,,求.

  检测:

  1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;

  (2)b=8,c=17,则S△ABC=________。

  2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

  A.12cmB.10cmC.8cmD.6cm

  4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

  5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

  课后反思或经验总结:

  1、什么叫勾股定理;

  2、什么样的三角形的三边满足勾股定理;

  3、用勾股定理解决一些实际问题。

勾股定理教案8

  复习第一步::

  勾股定理的有关计算

  例1:(2006年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

  析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

  勾股定理解实际问题

  例2.(2004年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

  析解:彩旗自然下垂的长度就是矩形DCEF

  的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂时的最低处离地面的最小高度h为70cm

  与展开图有关的计算

  例3、(2005年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

  析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

  在矩形ACC’A’中,因为AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴从顶点A到顶点C’的最短距离为

  复习第二步:

  1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的三角形是否为直角三角形.

  例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

  错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的'斜边和直角边,错把c当成了斜边.

  正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

  例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

  错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

  剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

  正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

  温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

  例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

  错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

勾股定理教案9

  【学习目标】

  能运用勾股定理及直角三角形的判别条件解决简单的实际问题.

  【学习重点】

  勾股定理及直角三角形的判别条件的运用.

  【学习重点】

  直角三角形模型的建立.

  【学习过程】

  一.课前复习

  勾股定理及勾股定理逆定理的区别

  二.新课学习

  探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

  1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

  思考:

  1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

  这样的线路有几条?可分为几类?

  2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

  A点到B点的最短路线是什么?你是如何画的?

  1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

  4.你是如何将这个实际问题转化为数学问题的?

  小结:

  你是如何解决圆柱体侧面上两点之间的最短距离问题的?

  探究点二:利用勾股定理逆定理如何判断两线垂直?

  1.31.31.3李叔叔想要检测雕塑底座正面的'AD边和BC边是否分别垂直底边AB,

  但他随身只带了卷尺。(参看P13页雕塑图1-13)

  (1)你能替他想办法完成任务吗?

  1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,

  BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

  (3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

  小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

  探究点三:利用勾股定理的方程思想在实际问题中的应用

  例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的高度CE=3m,CD=1m,试求滑道AC的长.

  1.3

  思考:

  1.求滑道AC的长的问题可以转化为什么数学问题?

  2.你是如何解决这个问题的?写出解答过程。

  小结:

  方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.

  四.课堂小结:本节课你学到了什么?

  三.新知应用

  1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

  1.3

  2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()

  1.3

  五.作业布置:习题1.41,3,4题

  【反思】

  一、教师我的体会:

  ①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

  把教材读薄,

  ②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

  ③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

  ④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

  二、学生体会:

  课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的思维能力。

  不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理教案10

  一、教学目标

  1.灵活应用勾股定理及逆定理解决实际问题.

  2.进一步加深性质定理与判定定理之间关系的认识.

  二、重点、难点

  1.重点:灵活应用勾股定理及逆定理解决实际问题.

  2.难点:灵活应用勾股定理及逆定理解决实际问题.

  3.难点的突破方法:

  三、课堂引入

  创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

  四、例习题分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名词;

  ⑵依题意画出图形;

  ⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

  ⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

  例2(补充)一根30米长的'细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

  分析:⑴若判断三角形的形状,先求三角形的三边长;

  ⑵设未知数列方程,求出三角形的三边长5、12、13;

  ⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

  解略.

  本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

勾股定理教案11

  一、全章要点

  1、勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

  2、勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

  3、勾股定理的证明 常见方法如下:

  方法一: , ,化简可证.

  方法二:

  四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

  四个直角三角形的面积与小正方形面积的和为

  大正方形面积为 所以

  方法三: , ,化简得证

  4、勾股数 记住常见的勾股数可以提高解题速度,如 ; ; ; ;8,15,17;9,40,41等

  二、经典训练

  (一)选择题:

  1. 下列说法正确的是( )

  A.若 a、b、c是△ABC的三边,则a2+b2=c2;

  B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;

  C.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2;

  D.若 a、b、c是Rt△ABC的三边, ,则a2+b2=c2.

  2. △ABC的三条边长分别是 、 、 ,则下列各式成立的是( )

  A. B. C. D.

  3.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )

  A.121 B.120 C.90 D.不能确定

  4.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为( )

  A.42 B.32 C.42 或 32 D.37 或 33

  (二)填空题:

  5.斜边的边长为 ,一条直角边长为 的直角三角形的面积是 .

  6.假如有一个三角形是直角三角形,那么三边 、 、 之间应满足 ,其中 边是直角所对的边;如果一个三角形的三边 、 、 满足 ,那么这个三角形是 三角形,其中 边是 边, 边所对的角是 .

  7.一个三角形三边之比是 ,则按角分类它是 三角形.

  8. 若三角形的三个内角的比是 ,最短边长为 ,最长边长为 ,则这个三角形三个角度数分别是 ,另外一边的平方是 .

  9.如图,已知 中, , , ,以直角边 为直径作半圆,则这个半圆的面积是 .

  10. 一长方形的'一边长为 ,面积为 ,那么它的一条对角线长是 .

  三、综合发展:

  11.如图,一个高 、宽 的大门,需要在对角线的顶点间加固一个木条,求木条的长.

  12.一个三角形三条边的长分别为 , , ,这个三角形最长边上的高是多少?

  13.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长20m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.

  14.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?

  15.如图,长方体的长为15,宽为10,高为20,点 离点 的距离为5,一只蚂蚁如果要沿着长方体的表面从点 爬到点 ,需要爬行的最短距离是多少?

  16.中华人民共和国道路交通管理条例规定:小汽车在城街路上行驶速度不得超过 km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方 m处,过了2s后,测得小汽车与车速检测仪间距离为 m,这辆小汽车超速了吗?

勾股定理教案12

  一、教学目标

  通过对几种常见的勾股定理验证方法,进行分析和欣赏。理解数

  学知识之间的内在联系,体会数形结合的思想方法,进一步感悟勾股定理的文化价值。

  通过拼图活动,尝试验证勾股定理,培养学生的动手实践和创新能力。

  (3)让学生经历自主探究、合作交流、观察比较、计算推理、动手操作等过程,获得一些研究问题的方法,取得成功和克服困难的经验,培养学生良好的思维品质,增进他们数学学习的信心。

  二、教学的重、难点

  重点:探索和验证勾股定理的过程

  难点:

  (1)“数形结合”思想方法的理解和应用

  通过拼图,探求验证勾股定理的新方法

  三、学情分析

  八年级的学生已具备一定的生活经验,对新事物容易产生兴趣,动手实践能力也比较强,在班级上已初步形成合作交流,勇于探索与实践的良好班风,估计本节课的学习中学生能够在教师的引导和点拨下自主探索归纳勾股定理。

  四、教学程序分析

  (一)导入新课

  介绍勾股世界

  两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。

  我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。

  (二)讲解新课

  1、探索活动一:

  观察下图,并回答问题:

  (1)观察图1

  正方形A中含有

  个小方格,即A的面积是

  个单位面积;

  正方形B中含有

  个小方格,即B的面积是

  个单位面积;

  正方形C中含有

  个小方格,即C的面积是

  个单位面积。

  (2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流。

  (3)请将上述结果填入下表,你能发现正方形A,B,C,的面积关系吗?

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图1

  9

  9

  18

  图2

  4

  4

  8

  2、探索活动二:

  (1)观察图3,图4

  并填写下表:

  A的面积

  (单位面积)

  B的面积

  (单位面积)

  C的面积

  (单位面积)

  图3

  16

  9

  25

  图4

  4

  9

  13

  你是怎样得到上面结果的?与同伴交流。

  (2)三个正方形A,B,C的面积之间的关系?

  3、议一议(合作交流,验证发现)

  (1)你能发现直角三角形三边长度之间存在什么关系吗?

  勾股定理:如果直角三角形两直角边分别为a、b,斜边为c

  ,那么a2+b2=c2。

  即直角三角形两直角边的平方和等于斜边的平方。

  (2)我们怎么证明这个定理呢?

  教师指导第一种证明方法,学生合作探究第二种证明方法。

  可得:

  想一想:大正方形的面积该怎样表示?

  想一想:这四个直角三角形还能怎样拼?

  可得:

  4、例题分析

  如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?

  解:∵,

  ∴在中,

  ,根据勾股定理,

  ∴电线杆折断之前的高度=BC+AB=5米+13米=18米

  (三)课堂小结

  勾股定理从边的角度刻画了直角三角形的.又一个特征.人类对勾股定理的研究已有近3000年的历史,在西方,勾股定理又被称为“毕达哥拉斯定理”、“百牛定理”、“驴桥定理”等等

  .

  (四)布置作业

  收集有关勾股定理的证明方法,下节课展示、交流.

  五、板书设计

  勾股定理的探索与证明

  做一做

  勾股定理

  议一议

  (直角三角形的直角边分别为a、b,斜边为c,则a2+b2=c2)

  六、课后反思

  《新课程标准》指出:“数学教学是数学活动的教学。”数学实验在现阶段的数学教学中还没有普及与推广,实际上,通过学生的合作探究、动手实践、归纳证明等活动,让数学课堂生动起来,也让学生感觉数学是可以动手做实验的,提高了学生学习数学的兴趣与激情。本节课,我充分利用学生动手能力强、表现欲高的特点,在充裕的时间里,放手让学生动手操作,自己归纳与分析。最后得出结论。我认为本节课是成功的,一方面体现了学生的主体地位,另一方面让实验走进了数学课堂,真正体现了实验的巨大作用。

勾股定理教案13

  一、学生知识状况分析

  本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

  二、教学任务分析

  本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。具体内容是运用勾股定理及其逆定理解决简单的实际问题。当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的.能力。

  三、本节课的教学目标是:

  1.通过观察图形,探索图形间的关系,发展学生的空间观念.

  2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

  3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.

  利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.

  四、教法学法

  1.教学方法

  引导—探究—归纳

  本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:

  (1)从创设问题情景入手,通过知识再现,孕育教学过程;

  (2)从学生活动出发,顺势教学过程;

  (3)利用探索研究手段,通过思维深入,领悟教学过程.

  2.课前准备

  教具:教材、电脑、多媒体课件.

  学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.

  五、教学过程分析

  本节课设计了七个环节.第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业.

  1.3勾股定理的应用:课后练习

  一、问题引入:

  1、勾股定理:直角三角形两直角边的________等于________。如果用a,b和c表示直角三角形的两直角边和斜边,那么________。

  2、勾股定理逆定理:如果三角形三边长a,b,c满足________,那么这个三角形是直角三角形

  1.3勾股定理的应用:同步检测

  1.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,小明家到学校用了8分钟,小刚上学走了个( )

  A.锐角弯B.钝角弯C.直角弯D.不能确定

  3.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理教案14

  学习目标:

  1、通过拼图,用面积的方法说明勾股定理的正确性.

  2、通过实例应用勾股定理,培养学生的知识应用技能.

  学习重点:

  1.用面积的方法说明勾股定理的正确.

  2. 勾股定理的应用.

  学习难点:

  勾股定理的应用.

  学习过程:

  一、学前准备:

  1、阅读课本第46页到第47页,完成下列问题:

  (1)我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦。图(1)称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的。图(2)是在北京召开的20xx年国际数学家大会(TCM-20xx)的会标,其图案正是“弦图”,它标志着中国古代的数学成就. 你能用不同方法表示大正方形的面积吗?

  2、剪四个完全相同的'直角三角形,然后将它们拼成如图所示的图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)

  二、合作探究:

  (一)自学、相信自己:

  (二)思索、交流:

  拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和

  (三)应用、探究:

  1、如图 ,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160米,BC长128米.问从点A穿过湖到点B有多远?

  (四)巩固练习:

  1、如图,64、400分别为所在正方形的面积,则图中字

  母A所代表的正方形面积是 _________ 。

  三.学习体会:

  本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。

  2②图

  四.自我测试:

  五.自我提高:

勾股定理教案15

  一、教学目标

  1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.

  2.探究勾股定理的逆定理的证明方法.

  3.理解原命题、逆命题、逆定理的概念及关系.

  二、重点、难点

  1.重点:掌握勾股定理的逆定理及证明.

  2.难点:勾股定理的逆定理的证明.

  3.难点的突破方法:

  先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  为学生搭好台阶,扫清障碍.

  ⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

  三、课堂引入

  创设情境:⑴怎样判定一个三角形是等腰三角形?

  ⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想.

  四、例习题分析

  例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

  ⑴同旁内角互补,两条直线平行.

  ⑵如果两个实数的平方相等,那么两个实数平方相等.

  ⑶线段垂直平分线上的点到线段两端点的距离相等.

  ⑷直角三角形中30°角所对的直角边等于斜边的一半.

  分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用.

  ⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.

  解略.

  本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系.

  例2(P82探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

  分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证.

  ⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

  ⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

  ⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的.两个三角形全等可证.

  ⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

  证明略.

  通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维.

  例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

  求证:∠C=90°.

  分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

  ⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大.根据勾股定理的逆定理只要证明a2+b2=c2即可.

  ⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证.

  本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大.②分别用代数方法计算出a2+b2和c2的值.③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形.

【勾股定理教案】相关文章:

勾股定理教案05-30

幼儿教案音乐教案05-31

艺术教案中班教案01-08

拼音a教案大班教案参考06-08

小班教案起床啦教案11-17

小学的教案02-02

微笑的教案02-09

《观潮》教案02-12

《猫》的教案02-15