- 开学第一课初二数学教案 推荐度:
- 相关推荐
数学初二教案
作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编为大家收集的数学初二教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学初二教案1
矩形
一、教学目标:
1、理解并掌握矩形的判定方法。
2、使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1、重点:矩形的判定。
2、难点:矩形的判定及性质的综合应用。
三、例题的意图分析
本节课的。三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.。
四、课堂引入
1、什么叫做平行四边形?什么叫做矩形?
2、矩形有哪些性质?
3、矩形与平行四边形有什么共同之处?有什么不同之处?
4、事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法。
矩形判定方法1:对角钱相等的平行四边形是矩形。
矩形判定方法2:有三个角是直角的四边形是矩形。
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了。因为由四边形内角和可知,这时第四个角一定是直角。)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;(×)
(2)有四个角是直角的四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)
(6)对角线互相平分且相等的四边形是矩形;(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形。(√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论。
数学初二教案2
教学目标
知识与技能
1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性
2、能判断给出的数是否为有理数;并能说出现由
过程与方法
1、让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神
2、通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力
情感与价值观
1、激励学生积极参与教学活动,提高大家学习数学的热情、
2、引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神
3、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神
教学重点
1、让学生经历无理数发现的过程、感知生活中确实存在着不同于有理数的数、
2、会判断一个数是否为有理数、
教学难点
1、把两个边长为1的正方形拼成一个大正方形的动手操作过程、
2、判断一个数是否为有理数、
教学方法
教师引导,主要由学生分组讨论得出结果、
教学过程
一、创设问题情境,引入新课
[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?
[生]在小学我们学过自然数、小数、分数
[生]在初一我们还学过负数、
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题
二、讲授新课
1、问题的提出
[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的`正方形,好吗?
[生]好、(学生非常高兴地投入活动中)
[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下
同学们非常踊跃地呈现自己的作品给老师
[师]现在我们一齐把大家的做法总结一下。
2、1认识无理数:同步练习
2、下列说法中正确的是()
A、不循环小数是无理数
B、分数不是有理数
C、有理数都是有限小数
D、3、1415926是有理数
3、下列语句正确的是()
A、3、78788788878888是无理数
B、无理数分正无理数、零、负无理数
C、无限小数不能化成分数
D、无限不循环小数是无理数
《2、1认识无理数》课后练习
1、在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?(结果保留3位有效数字)
2、下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段、(要求:所作线段不得与图中已有的线重合)
数学初二教案3
教学目标
1、等腰三角形的概念、
2、等腰三角形的性质、
3、等腰三角形的概念及性质的应用、
教学重点:
1、等腰三角形的概念及性质、
2、等腰三角形性质的应用、
教学难点:
等腰三角形三线合一的性质的理解及其应用、
教学过程
Ⅰ、提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案、这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形、来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是、
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形、
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形、
Ⅱ、导入新课:要求学生通过自己的'思考来做一个等腰三角形、
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形、
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角、同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角、
思考:
1、等腰三角形是轴对称图形吗?请找出它的对称轴、
2、等腰三角形的两底角有什么关系?
3、顶角的平分线所在的直线是等腰三角形的对称轴吗?
4、底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形、它的对称轴是顶角的平分线所在的直线、因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线、
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系、
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高、
由此可以得到等腰三角形的性质:
1、等腰三角形的两个底角相等(简写成“等边对等角”)、
2、等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)、
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质、同学们现在就动手来写出这些证明过程)、
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS)、
所以∠B=∠C、
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD、
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°、
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数、
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A、
再由三角形内角和为180°,就可求出△ABC的三个内角、
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷、
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC、
∠A=∠ABD(等边对等角)、
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x、
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°、在△ABC中,∠A=35°,∠ABC=∠C=72°、
[师]下面我们通过练习来巩固这节课所学的知识、
Ⅲ、随堂练习:
1、课本P51练习1、2、3、 2、阅读课本P49~P51,然后小结、
Ⅳ、课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用、等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高、
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们、
Ⅴ、作业:课本P56习题12、3第1、2、3、4题、
板书设计
12、3、1、1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:
1、等边对等角
2、三线合一
数学初二教案4
一、学生起点分析
学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能。
学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力。
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》。本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学。课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:
①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质。
②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识。
③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲。
三、教学过程设计
本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置。
第五环节:学习小结
内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的通过这节课的学习,我们要掌握以下的内容:
(1)算术平方根的概念,式子中的双重非负性:一是a≥0,二是≥0。
(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根。
(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根。
目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的`概念和性质。
第六环节:作业布置
习题2.3
四、教学设计反思
1、细讲概念、强化训练
要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的概念教学过程中要做到:讲清概念,加强训练,逐步深化。
“讲清概念”就是通过具体实例揭露算术平方根的本质特征。算术平方根的本质特征就是定义中指出的:“如果一个正数的平方等于,即,那么这个正数就叫做的算术平方根,”的“正数”,即被开方数是正的,由平方的意义,也是正数,因此算术平方根也必须是正的当然零的算术平方根是零。
“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示。
“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用。
2、发展思维、适度拓展
在教学中,根据学生的实际情况,在学有余力的情况下,可以对的双重非负性的知识进行适当的拓展。
数学初二教案5
1、教材分析
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。
2、教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2、了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1、通过引导学生观察气象站的.实例,培养学生从具体事物中抽象出几何图形的能力。
2、通过推导四边形内角和定理,对学生渗透化归思想。
3、会根据比较简单的条件画出指定的四边形。
4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点难点疑点及解决办法
1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2、教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
【复习引入】
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一
章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
【引入新课】
用投影仪打出课前画好的教材中P119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。
【讲解新课】
1、四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。
(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。
2、四边形内角和定理
教师问:
(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?
(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?
(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180,那么四边形的内角和就等于:
①2180=360如图4
②4180—360=360如图4—7。
例1已知:如图48,直线于B、于C。
求证:(1)(2)。
本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
【总结、扩展】
1、四边形的有关概念。
2、四边形对角线的作用。
3、四边形内角和定理。
八、布置作业
教材P128中1(1)、2、 3。
九、板书设计
数学初二教案6
教学目的
通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点
1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数
本利和=本金×利息×年数+本金
2.商品利润等有关知识。
利润=售价—成本; =商品利润率
二、新授
问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?
利息—利息税=48。6
可设小明爸爸前年存了x元,那么二年后共得利息为
2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6
问,扣除利息的20%,那么实际得到的'利息是多少?扣除利息的20%,实际得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?
大家想一想这15元的利润是怎么来的?
标价的80%(即售价)-成本=15
若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x
每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%—x
由等量关系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服装的成本是125元。
三、巩固练习
教科书第15页,练习1、2。
四、小结
当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。
五、作业
教科书第16页,习题6.3.1,第4、5题。
数学初二教案7
教学目标
1知识与技能目标
(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.
(2)能判断给出的数是否为无理数,并能说出理由.
2过程与方法目标
(1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.
(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.
(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.
3情感与态度目标
(1)激励学生积极参与教学活动,提高大家学习数学的热情.
(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.
(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.
教学重点
1让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.
2会判断一个数是否为有理数,是否不是有理数.
3用计算器进行无理数的估算.
教学难点
1把两个边长为1的正方形拼成一个大正方形的动手操作过程.
2无理数概念的建立及估算.
3判断一个数是否为有理数.
教学准备:多媒体,两个边长为1的正方形,剪刀,短绳.
教学过程:
第一环节:章节引入(2分钟,学生阅读感受)
内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:
(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?
(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?
b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?
第二环节:复习引入(3分钟,学生口答)
内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称.
请用上述材料中所涉及的知识证明下面的问题:
a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?
b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?
第三环节:活动探究(15分钟,学生动手操作,小组合作探究)
(一)发现新数
内容:将课前已准备好的两个边长为1的'小正方形剪一剪,拼一拼,设法得到一个大正方形.
在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:
(1)设大正方形的边长为,应满足什么条件?
(2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?
(3)可能是分数吗?说说你的理由?
引出课题《数怎么又不够用了》
(二)感受新数的广泛性
内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。
(三)巩固验证,应用拓展
内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.
b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些
小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段
第四环节:介绍历史,开阔视野(3分钟,学生阅读)
内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现.
第五环节:课时小结(2分钟,全班交流)
内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?
b感受数不够用了,会确定一个数是有理数或不是有理数.
c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识.
第六环节:布置作业
数学初二教案8
教学目标
知识与技能目标
1.经历平行四边形判别条件的探索过程,发现平行四边形的常用判别条件。
2.掌握平行四边形的判别条件;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
3.逐步掌握说理的基本方法。
过程与方法目标
1.在探索平行四边形的判别条件的过程中,发展学生的合情推理意识,主动探索的习惯。
2.鼓励学生用多种方法进行说理。
情感与态度目标
1.培养学生探索创新的能力,开拓学生思路,发展学生的思维能力。
2.培养学生合作学习,增强学生的自我评价意识。
教材分析
教材通过创设“钉制平行四边形框架”这一情境,便于学生发现和探索平行四边形的常用判别方法。如有条件可要求学生自己准备,由学生自我操作。也可由教师演示。
教学重点:平行四边形的判别方法。
教学难点:利用平行四边形的判别方法进行正确的'说理。
学情分析
初二学生对平面图形的认识能力正在形成,抽象思维还不够,学习几何知识处于现象描述和说理的过渡时期。因此,对这部分内容的学习,要引导学生学会正确的说理,理清楚四边形在什么条件下用判定定理,在什么条件下用性质定理。
教学流程
一、创设情境,引入新课
师:请同学们拿出课前准备的小木条,帮助小明的爸爸钉制平行四边形的框架。
学生活动:学生按小组进行探索。
数学初二教案9
新课指南
1、知识与技能:
(1)在具体情境中了解代数式及代数式的值的含义;
(2)掌握整式、同类项及合并同类项法则和去括号法则;
(3)培养学生用字母表示数和探索数学规律的能力。
2、过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式。在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题。
3、情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面。
4、重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的'法则。难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识。
教材解读精华要义
数学与生活
如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块。
思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖。综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块。这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?
知识详解
知识点1代数式
用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数。的字母连接起来的式子叫做代数式。单独的一个数或一个字母也是代数式。
例如:5,a,(a+b),ab,a2-2ab+b2等等。
知识点2列代数式时应该注意的问题
(1)数与字母、字母与字母相乘时常省略“×”号或用“·”。
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)数字通常写在字母前面。
如:mn×(-5)=-5mn,3×(a+b)=3(a+b)。
(3)带分数与字母相乘时要化成假分数。
如:2×ab=ab,切勿错误写成“2ab”。
(4)除法常写成分数的形式。
如:S÷x=。
数学初二教案10
一、教学目标
1.掌握等腰梯形的判定方法。
2.能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力。
3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想
二、教法设计
小组讨论,引导发现、练习巩固
三、重点、难点
1.教学重点:等腰梯形判定。
2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).
四、课时安排
1课时
五、教具学具准备
多媒体,小黑板,常用画图工具
六、师生互动活动设计
教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线
七、教学步骤
【复习提问】
1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性质?它的性质定理是怎样证明的?
3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?
我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题。
【引人新课】
等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形。
前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理。
例1已知:如图,在梯形中,求证:.
分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等。”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了。
(引导学生口述证明方法,然后利用投影仪出示三种证明方法)
(1)如图,过点作、,交于,得,所以得.
又由得,因此可得.
(2)作高、,通过证推出.
(3)分别延长、交于点,则与都是等腰三角形,所以可得.
(证明过程略).
例3求证:对角线相等的梯形是等腰梯形。
已知:如图,在梯形中,.
求证:.
分析:证明本题的'关键是如何利用对角线相等的条件来构造等腰三角形。
在和中,已有两边对应相等,别人要能证,就可通过证得到.
(引导学生说出证明思路,教师板书证明过程)
证明:过点作,交延长线于,得,∴ .
∵,∴
∴
∵,∴
又∵ 、,∴
∴ .
说明:如果、交于点,那么由可得,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路。
例4画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积。
分析:如图,先算出长,可画等腰三角形,然后完成的画图。
画法:①画,使.
.
②延长到使.
③分别过、作,、交于点.
四边形就是所求的等腰梯形。
解:梯形周长.
答:梯形周长为26cm,面积为.
【总结、扩展】
小结:(由学生总结)
(l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形。
(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形。(三角形奠基法)
八、布置作业
l.已知:如图,梯形中,、分别为、中点,且,求证:梯形为等腰梯形。
九、板书设计
十、随堂练习
教材P177中l;P179中B组2
数学初二教案11
一、相交线:
性质:两条直线相交,有且只有一个交点。
二、对顶角、邻补角:
1.对顶角:如图,直线AB和CD相交于点O,∠1与∠2有公共顶点O,它们的两边互为反向延长线,这样的两个角叫做对顶角。
说明:两个角是对顶角必需满足两个条件:
(1)有公共顶点;
(2)两边互为反向延长线。
2.邻补角:如图,∠1和∠2有一条公共边OC,它们的另一条边OA、OB互为反向延长线,显然它们互补。具有这种关系的两个角叫做互为邻补角。
3.性质:
(1)对顶角相等;
(2)互为邻补角的两个角的和等于。
三、有关垂线的概念和性质:
1.概念:如果两条直线相交所成的四个角中,有一角是直角,就说这两条直线互相垂直,其中的一条叫做另一条直线的垂线,它们的交点叫做垂足。
说明:垂直是相交的一种特殊情况。
2.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
说明:垂线是直线,而垂线段是一条线段,点到直线的距离不是指垂线段,而是指垂线段的长度。
3.平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离。平行线间的距离处处相等。
4.性质:
(1)互相垂直的两条直线相交所成的四个角都是直角;
(2)过直线上一点或直线外一点画已知直线的垂线,并且只能画出一条垂线;
(3)连结直线外一点与直线上各点的所有线段中,垂线段最短。简单地说:垂线段最短;
(4)平行线间的距离处处相等。
四、同位角、内错角、同旁内角:
如图,直线AB、CD被第三条直线EF所截,构成八个角,简称“三线八角”。
1.同位角:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8,它们分别在AB、CD同侧,且在EF同侧。同位角呈“F”形;
2.内错角:∠3与∠5,∠4与∠6,它们分夹在AB、CD之间,同时又各在EF两侧。内错角呈“Z”形;
3.同旁内角:∠4与∠5,∠3与∠6,它们分别夹在AB、CD之间,同时又在EF同侧。同旁内角呈“U”形。
说明:
(1)同位角、内错角、同旁内角是指具有特殊位置关系的两个角;
(2)这三类角都是由两条直线被第三条直线所截形成的;
(3)同位角特征:截线同旁,被截两线的同方向;内错角特征:截线两旁,被截两线段之间;同旁内角特征:截线同旁,被截两线段之间;
(4)两条直线被第三条直线所截成的八个角中,同位角4对,内错角2对,同旁内角2对。
常见考法
(1)对顶角、邻补角、同位角、内错角和同旁内角,在中考中必有所涉及,一般是综合其它知识一起考查;
(2)垂线段最短的性质在生活中有广泛应用,在中考中一般以填空、作图出现,主是根据要求作出垂线段或用性质解释理由。
误区提醒
(1)对顶角、邻补角以及垂线的概念理解有误;
(2)在复杂图形中辨认同位角、内错角、同旁内角时产生遗漏或错认。
典型例题如图,∠BAC=90°,AD⊥BC,则下面的结论中,正确的个数是()个。
①点B到AC的垂线段是线段AB;
②线段AC是点C到AB的垂线段;
③线段AD是点D到BC的垂线段;
④线段BD是点B到AD的垂线段;
A.1B.2C.3D.4
解析③是错误的,其余的均是正确的,故本题选C
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认;
2.掌握对顶角相等的性质和它的推证过程;
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角;
两条直线互相垂直的概念、性质和画法;
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角;
对点到直线的距离的概念的理解;
对平行线本质属性的'理解,用几何语言描述图形的性质;
能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架
五、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的。关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。充要条件。
数学初二教案12
学习目标:
1、了解平行线性质定理和判定定理在条件和结论上的区别,体会互逆的思维过程;
2、能熟练应用平行线的性质公理及定理。
一、试一试
自学指导:平行线性质公理:两直线平行,同位角相等
1、 思考下列各题,你能利用平行线性质公理解决它们吗?
2、 充分思考后自学教材P229-231,学完后合上课本完成下列各题,注意逻辑和书写。
(1)已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的内错角。请根据平行线性质公理证明∠1=∠2
由此得平行线性质定理1:
(2) 已知,如图,直线a∥b,∠1和∠2是直线a,b被直线c截出的同旁内角。请根据平行线性质公理或上题已证的.定理证明∠1+∠2=180°
由此得平行线性质定理2:
二、练一练
1、已知:如图,直线a,b,c被直线d所截,且a∥b,c∥b
(1)求证:a∥c
(2)请将(1)题证得的结论用一句话总结出来
2、利用“两直线平行,同旁内角互补”证明“平行四边形对角线相等”。
四、记一记
1、两直线平行的性质公理及两个性质定理;
2、平行线的性质补充结论
(1)垂直于两平行线之一的直线必垂直于另一条直线
(2)夹在两平行线之间的平行线段相等;
(3)两条平行线间的距离处处相等;
(4)经过直线外一点,有且只有一条直线和已知直线平行;
(5)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补
B组:请在补充结论中选择你感兴趣的进行证明:
数学初二教案13
一、学生情况分析及改进提高措施:
学生们经过两年的学习,已经具备了初步的逻辑思维能力和简单的抽象概括能力,养成了一些良好的学习习惯,掌握了一些科学的学习方法,学会了独立思考和与人沟通、协商、合作、交流的能力,学会了探究问题,并能根据具体情况提出合理的问题,还能正确解决问题的能力。无论是理解问题的能力,还是分析、解决问题的能力均有所提高,基础知识和基本技能打得也比较扎实,对数学学习有着浓厚的兴趣,乐于参与到学习活动中去,特别是对一些动手操作,合作学习,实践活动等学习内容尤为感兴趣,因此,在教学中应多设计一些活动,引导学生进行独立思考与合作交流,帮助学生积累参加数学学习活动的经验。
在数学知识上已经掌握了两步计算式题和有余数的除法,还有统计知识,并学会了辨认八个方位;掌握了万以内数的读法、写法和加、减法;还掌握了长度单位毫米、厘米、分米、米和千米的实际长度和简单的换算以及实际测量,并能用以上这些相应的知识解决实际生活中的问题。总之,这些技能和知识点都为本学期进一步学习新知识打下了坚实的基础,他们爱学数学的热情,以及对数学的感悟能力会在本学期进一步得到发扬光大,他们的情感、态度、价值观会沿着良性轨道螺旋式上升。
具体提高措施是:
1.从学生的年龄特点出发,多采用情境活动式教学,培养学生的参与意识。两班学生都能根据教师给出的情境获取相关的数学信息,并能根据有效信息提出数学问题,能积极投入到探索问题的活动中去,绝大部分学生能够在课堂上主动的研究问题,获取知识。
2.在课堂教学中,多增添一些与学生生活相关的利于孩子理解的问题,让学生在解决问题的过程中能够联系到实际,便于对问题的理解。结合学生的生活实际,将问题生活化,让学生从生活中获取到更多的解决问题的素材。
3.课后练习注重增添以学习内容为主的相关实践练习,加强各学科之间的联系,少一些呆板的练习,提高练习的实践性和趣味性。在上学期的教学中,我发现学生们比较喜欢做不同科目之间有联系的综合性作业,例如我把数学与科学课相结合,让他们种豆子,了解植物的生长,并做记录,再将每天的记录制作成统计图,学生完成作业的积极性特别高。我为了让学生了解长度单位,让他们从成语词典上收集有关长度单位的`成语,通过对词语的理解把握其表示的长度。
4.加强学校教育和家庭教育的联系。关注学生的平时学习情况,与学生家长多沟通交流。
二、本册教材分析
本册教材充分体现了新《课程标准》的理念,以学生的数学活动实践为学习内容,教材创设了生动有趣的情境,引导学生在解决现实问题的过程中获得对数学知识的理解和体验。教学内容主要包括(1)乘法;(2)除法;(3)观察物体;(4)千克、克、吨;(5)、周长;(6)年、月、日;(7)可能性;(8)共有五个社会实践活动,还有两个整理复习,一个总复习。具体特点是:
1.在数与代数的学习中,重视动手操作与抽象概括相结合,体验乘、除法意义,发展了学生的数感和符号感。
2.在空间和图形学习中,从学生的生活经验出发,注重通过操作活动发展空间观念。
3.教材为教师留下了创造空间,可结合自身教学要求,生发新的教学设想,内化自己的教学设计。
三、总体教学目标:
(一)、知识与技能
1.在单元学习中,学生通过“数一数”、“分一分”等活动,经历从具体情境中抽象出乘法除法算式,体会乘法与除法的意义。
2.学平面图形的周长,会进行周长的计算。
(二)、实践能力培养
1.观察物体,引导学生经历观察的过程,体验从不同的位置观察,所看到的物体可能是不一样的。
2.结合生活情境,感受并认识质量单位。
3.经历对生活中某些现象进行推理、判断的过程,能对生活中的某些现象按一定的方法进行逻辑推理、判断其结果。
(三)、情感与态度
1、让学生在观察和操作的学习活动中,能够感受到思考的条理性和合理性。
2、教师重视对学生数学学习过程的评价,让他们在感受到乐趣之外,应具备必要的学习自信心,养成良好的学习习惯。
教研专题:
创设课堂学习情境,有效培养创新意识。
个人专题:
在情境中培养学生的自主学习意识,提高课堂的有效性。
数学初二教案14
一、读一读
学习目标:
1、熟练证明的基本步骤和书写格式;
2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。
二、试一试
自学指导:平行线判定公理: 同位角相等,两直线平行
1、自学教材P229-231,学完后合上课本完成下列各题:
(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b
由此得,平行线判定定理1: ;
(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的'判定定理证明a∥b
由此得,平行线判定定理2: .
三、练一练
1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决
2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°
求证:a∥b 你有几种证明方法?请选择其中两种方法来证明
四、记一记:
证明命题的一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;
(4)检查证明过程是否正确完善。
数学初二教案15
教学目标
1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
2.过程与方法目标:发展学生的分析问题能力和表达能力。经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育
教学重点
1、重点:勾股定理及其逆定理的应用
2、难点:勾股定理及其逆定理的应用
一、基础知识梳理
在本章中,我们探索了直角三角形的三边关系,并在此基础上得到了勾股定理,并学习了如何利用拼图验证勾股定理,介绍了勾股定理的用途;本章后半部分学习了勾股定理的逆定是以及它的应用.其知识结构如下:
1.勾股定理:
直角三角形两直角边的XXXXXX和等于XXXXXXX的平方.就是说,对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有:————————————.这就是勾股定理.
勾股定理揭示了直角三角形XXX之间的数量关系,是解决有关线段计算问题的重要依据.
勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长.这里一定要注意找准斜边、直角边;二要熟悉公式的变形:
,.
2.勾股定理逆定理
“若三角形的两条边的平方和等于第三边的平方,则这个三角形为XXXXXXXX.”这一命题是勾股定理的逆定理.它可以帮助我们判断三角形的形状.为根据边的'关系解决角的有关问题提供了新的方法.定理的证明采用了构造法.利用已知三角形的边a,b,c(a2+b2=c2),先构造一个直角边为a,b的直角三角形,由勾股定理证明第三边为c,进而通过“SSS”证明两个三角形全等,证明定理成立.
3.勾股定理的作用:
已知直角三角形的两边,求第三边;
勾股定理的逆定理是用来判定一个三角形是否是直角三角形的,但在判定一个三角形是否是直角三角形时应首先确定该三角形的边,当其余两边的平方和等于边的平方时,该三角形才是直角三角形.勾股定理的逆定理也可用来证明两直线是否垂直,这一点同学
勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理,它不仅可以判定三角形是否为直角三角形,还可以判定哪一个角是直角,从而产生了证明两直线互相垂直的新方法:利用勾股定理的逆定理,通过计算来证明,体现了数形结合的思想.
三角形的三边分别为a、b、c,其中c为边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形.所以使用勾股定理的逆定理时首先要确定三角形的边.
二、考点剖析
考点一:利用勾股定理求面积
求:(1) 阴影部分是正方形; (2) 阴影部分是长方形; (3) 阴影部分是半圆.
2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.
考点二:在直角三角形中,已知两边求第三边
例(09年山东滨州)如图2,已知△ABC中,AB=17,AC=10,BC边上的高,AD=8,则边BC的长为( )
A.21 B.15 C.6 D.以上答案都不对
【强化训练】:1.在直角三角形中,若两直角边的长分别为5cm,7cm ,则斜边长为 .
2.(易错题、注意分类的思想)已知直角三角形的两边长为4、5,则另一条边长的平方是
3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.(结论:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch)
考点三:应用勾股定理在等腰三角形中求底边上的高
例、(09年湖南长沙)如图1所示,等腰中,,
是底边上的高,若,求 ①AD的长;②ΔABC的面积.
考点四:应用勾股定理解决楼梯上铺地毯问题
例、(09年滨州)某楼梯的侧面视图如图3所示,其中米,,
,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的长度应为 .
分析:如何利用所学知识,把折线问题转化成直线问题,是问题解决的关键。仔细观察图形,不难发现,所有台阶的高度之和恰好是直角三角形ABC的直角边BC的长度,所有台阶的宽度之和恰好是直角三角形ABC的直角边AC的长度,只需利用勾股定理,求得这两条线段的长即可。
考点五、利用列方程求线段的长(方程思想)
1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开4米后,发现下端刚好接触地面,你能帮他算出来吗?
【强化训练】:折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=4cm,BC=5cm,求CF 和EC。.
考点六:应用勾股定理解决勾股树问题
例、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中的正方形的边长为5,则正方形A,B,C,D的面积的和为
分析:勾股树问题中,处理好两个方面的问题,
一个是正方形的边长与面积的关系,另一个是正方形的面积与直角三角形直角边与斜边的关系。
考点七:判别一个三角形是否是直角三角形
例1:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能够成直角三角形的有
【强化训练】:已知△ABC中,三条边长分别为a=n-1, b=2n,c=n+1(n>1).试判断该三角形是否是直角三角形,若是,请指出哪一条边所对的角是直角.
考点八:其他图形与直角三角形
例:如图是一块地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求这块地的面积。
考点九:与展开图有关的计算
例、如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.
【强化训练】:如图一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行 cm
四、课时作业优化设计
【驻足“双基”】
1.设直角三角形的三条边长为连续自然数,则这个直角三角形的面积是XXXXX.
2.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为( ).
A.6cm B.8.5cm C.cm D.cm
【提升“学力”】
3.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求DC的长.
4.如图,一只鸭子要从边长分别为16m和6m的长方形水池一角M游到水池另一边中点N,那么这只鸭子游的最短路程应为多少米?
5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是
6.如图:在一个高6米,长10米的楼梯表面铺地毯,
则该地毯的长度至少是 米。
【聚焦“中考”】
8.(海南省中考题)如图,铁路上A、B两点相距25km,C、D为两村庄,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站建在距A站多少千米处?
5.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是
6.如图:在一个高6米,长10米的楼梯表面铺地毯,
则该地毯的长度至少是 米。
【数学初二教案】相关文章:
初二数学教学总结01-05
初二语文上册教案10-24
初二数学上册教学计划03-05
人教版初二语文教案01-29
初二语文爱莲说教案12-01
初二数学教学工作总结05-26
初二数学教学工作总结05-24
初二上册数学教学计划01-24
小学数学的教案07-22