《面积计算》教案

时间:2024-06-14 18:25:21 教案 我要投稿

[精]《面积计算》教案15篇

  作为一位兢兢业业的人民教师,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?下面是小编整理的《面积计算》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

[精]《面积计算》教案15篇

《面积计算》教案1

  教学内容:教科书第80~81页的内容,完成第81页上”做一做“和练习十九的第1~4题。

  教学目的:

  1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确地计算梯形的面积。

  2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教具准备:

  1、小黑板上画下面复习题中的两个三角形图和教科书第80页上面的插图。

  2、用厚纸做两个完全一样的梯形,其中一个梯形涂成红色。

  3、学生将教科书第147页上面的两个梯形剪下来。

  教学过程:

  一、复习。

  出示三角形图。

  问:三角形的面积怎样求?

  这个三角形的面积是多少?

  三角形的面积计算公式我们是怎样推导出来的?

  怎样用两个完全一样的三角形拼出一个平行四边形?(让一个学生到黑板前拼一拼。教师再边说边演示用两个完全一样的三角形拼成一个平行四边形的过程)

  师:前面我们学习了平行四边形面积和三角形面积的计算,下面我们继续学习梯形面积的计算。(板书:梯形面积的计算)

  二、新课。

  1.教学梯形面积的'计算公式。

  出示教科书第80页上面的梯形图。

  问:这个图形是什么形?(梯形)

  师:今天我们要学习梯形面积的计算。刚才我们回忆了三角形面积计算公式的推导过程。

  问:谁能依照三角形面积公式的推导过程,把梯形也转化成已学过的图形?(让学生拿出准备好的两个完全一样的梯形,每人都拼一拼,摆一摆。然后让一个学生到黑板前摆一摆。)

  教师拿出两个完全一样的梯形(一个涂成红色),边说边演示:先把两个梯形重叠,把红色的梯形放在上面,以梯形右下角的顶点为中心,把红色的梯形旋转180度,再把红色的梯形的左边沿着白色的梯形的右边向上移动,使红色梯形的上底和白色梯形的下底同在三条直线上。然后,再带学生一起拼摆。

  问:两个完全一样的梯形,经过旋转、平移,两个梯形组成了一个新的图形,是什么形?(平行四边形)

  两个完全一样的梯形拼成了一个平行四边形,这个平行四边形的面积和其中一个梯形的面积有什么关系?(梯形的面积是平行四边形面积的一半)

  平行四边形的底等于什么?(等于梯形的上底、下底之和)

  平行四边形的高和梯形的高有什么关系?(相等)

  平行四边形的面积怎样算?(它的底等于3+5=8,高是4,所以平行四边形的面积是32平方厘米)

  一个梯形的面积怎样算?(提示学生回答,

  教师板书:(3+5)×4÷2

  =8×4÷2

  =32÷2

  =16(平方厘米)

  师:下面我们一起来梯形的面积计算公式。刚才我们已经看到梯形的面积是平行四边形面积的一半,平行四边形的面积是怎样算的?(底×高)

  问:在这里平行四边形的底是什么?(是梯形的上底和下底之和)

  平行四边形的高是什么?(就是梯形的高)

  板书:

  平行四边形的面积=(上底+下底)×高

  梯形的面积=(上底+下底)×高÷2

  如果用S表示梯形的面积,用a、b、h分别表示梯形的上底、下底和高,那么梯形的面积计算公式就是:

  S=(a+b)×h÷2

  问:为什么梯形面积的计算公式中要除以2?(提问学生重申说明:我们学习梯形面积的计算方法,是把梯形转化成了一个平行四边形。而由两个梯形组成的平行四边形的底正是梯形的上底加下底之和,平行四边形的高和梯形的高相等,所以平行四边形的面积就等于上底加下底再乘以高,梯形的面积就等于上底加下底的和乘以高再除以2。)

  2.应用出的梯形面积公式计算梯形面积。

  (1)出示第81页例题。

  指名读题,教师出示水渠的教具,再指出它的横截面,让学生看清它的横截面是一个梯形。再让学生看书。

  问:这个梯形的上底是多少?下底呢?

  这个梯形的高是多少?

  梯形的面积计算公式是什么?怎样列式计算?(学生口述,教师板书)

  (2)完成教科书第81页”做一做“中的题目。学生独立计算(说明:四边形中互相平行的一组对边,就分别是梯形的上底和下底。

  三、巩固练习。

  练习十九第1、2题。

  四、作业。

  练习十九第3、4题。

  课后:

《面积计算》教案2

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的'面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

  师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

《面积计算》教案3

  重点难点

  使学生进一步熟悉三角形面积的计算公式,熟练地计算不同三角形的面积

  教学准备(含资料辑录或图表绘制)

  教和学的过程

  一、练习

  二、总结

  一、第5题

  可以通过计算解决,也可以把三角形的底和高与平行四边形逐一进行比较。教学时,重点放在后一种方法的'比较上。

  二、第6题

  要使学生画出的三角形的面积是9平方厘米,三角形底和高的乘积应是18。因此,方格纸上画出的三角形可以分别是:底6cm,高3cm;底3cm,高6cm;底9cm,高2cm;底2cm,高9cm;底1cm,高18cm。

  三、第9题

  测量红领巾高时,可以启发学生把红领巾对折后再测量。

  四、第10题

  要使学生认识到:涂色三角形与它所在的平行四边形等底等高,所以每个涂色三角形的面积都是它所在平行四边形面积的一半。

  五、思考题

  每个大三角形的面积是16平方厘米;中等三角形的面积是8平方厘米;每个小三角形的面积是4平方厘米;平行四边形和小正方形的面积是8平方厘米。

  通过今天的练习我们对三角形面积计算方法的运用就更加熟练了,在以后的学习生活中我们还要多用它去解决一些实际问题,达到学以致用的目的。

  做练习

《面积计算》教案4

  素质教育目标

  (一)知识教学点

  1.理解一个数连续乘以两个一位数,改成乘以这两个一位数的积的算理.

  2.理解一个数乘以一个两位数转化为一个数连续乘以两个一位数的算理.

  (二)能力训练点

  1.能正确运用一个数连续乘以两个一位数和一个数乘以两位数的简便算法.

  2.正确、合理地进行简算.提高学生的计算能力,培养学生思维的灵活性.

  (三)德育渗透点

  通过灵活、合理的简便算法调动学生学习的积极性.

  教学重点:使学生理解掌握一个数连续乘以两个一位数和一个数乘以一个两位数的简便算法.

  教学难点:选择合理的简便算法.

  教具、学具准备:投影片.

  教学步骤

  一、铺垫孕伏

  1.口算:1230 1820 2440

  354254452

  2.把两位数写成两个一位数相乘

  15=( )( ) 30=( )( ) 24=( )( )

  3.应用题:商店有5盒手电筒,每盒12个.每个手电筒卖6元,一共可以卖多少元?(让学生自己用不同方法列综合算式解答)一人板演,其它学生完成在练习本上.

  第一种解法: 第二种解法:

  6125 6(125)

  =725 =660

  =360(元) =360(元)

  你发现什么?

  使学生明确:

  (1)两种解法的.结果是一样的,即6125= 6(125)从而得出:三个数相乘,除了从左到右依次相乘外,可以先把后两个数相乘,再和第一个数相乘,结果不变.

  (2)当两个乘数相乘得整十数时,第二种算法简便.

  板书课题:简便算法

  二、探究新知

  1.教学例1

  (1)出示例 1 3552

  学生试做

  (2)订正:使学生明确简算方法

  3552

  =35(52)

  =3510

  =350

  (3)拓展补充4529

  (4)学生完成做一做

  2.教学例2

  (1)出示例2 2516

  ①讨论怎样计算简便?

  引导学生说出把16分成 44,这样2544计算起来比较简便.

  2516

  =25(44)

  =2544

  =1004

  =400

  ②启发学生想不同的算法.

  (2)拓展补充

  1512怎样算比较简便?

  (3)练习:108页的做一做

  三、巩固发展

  1.填空:

  (1)2745 (2)1512

  =27[( )○( )] =15[( )○( )]

  =27[( )○( )] =15[( )○( )]

  =27[ ]=15[ ]

  = =

  2.在( )里填上适当的数,在○里填写适当的运算符号,使计算简便

  46254=46[( )○( )]

  3.练习二十五1题

  4.练习二十五3题(填写在书上)

  5.练习二十五5题

  四、全课小结:今天你又学得了哪些新知识?

  五、布置作业:练习二十五4题.

  六、板书设计

  简便算法

  有时一个数连续乘以两个一位数,改成乘以这两个一位数和积,比较简便.

  例1:3552

  =35(52)

  =3510

  =350

  有时一个数乘以两位数,改成连 续乘以两个一位数,计算比较简便.

  例2:25162516

  =25(44) =25(28)

  =2544=2528

  =1004=508

  =400=400

《面积计算》教案5

  教学内容:教材第4~5页例2、例3和练一练及练习一。

  教学要求:

  1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

  2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

  教具学具准备:教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

  教学重点:掌握圆柱侧面积的计算方法。

  教学难点:能根据实际情况正确地进行计算。

  教学过程:

  一、铺垫孕伏:

  1.复习圆柱的特征。提问:圆柱有什么特征?

  2.计算下面圆柱的侧面积(口头列式):

  (1)底面周长4.2厘米,高2厘米。

  (2)底面直径3厘米,高4厘米。

  (3)底面半径1厘米,高3.5厘米。

  3.提问:圆柱的一个底面面积怎样计算?

  4.引入新课。

  我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

  二自主研究:

  1.认识表面积计算方法。

  (1)请同学们拿出圆柱来看一看,想一想圆柱的表面包括哪几个部分,然后告诉大家。指名学生拿出圆柱,边指边说明它的表面包括哪几个部分。

  (2)教师演示。

  出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

  (3)得出公式。

  请同学们看着表面展开的.图形说一说,圆柱的表面积应该怎样计算?(板书:圆柱的表面积:侧面积+两个底面积)追问:圆柱的侧面积怎样算?圆柱的一个底面积怎样算?

  2.教学例2。

  出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

  3.组织练习。

  做练一练。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

  4.教学例3。

  出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。

  5.组织练习。

  (1)第七页第四题(2)。先小组合作讨论,再书面练习,然后集体订正。

  三、课堂小结

  这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用四舍五入法。

  四、布置作业

  练习一第8、10、11题及数训。

  五、板书设计:

  圆柱的表面积

  圆柱的表面积=圆柱侧面积+两个底面的面积

  例2(1)S侧:20xx.1444=5526.4(平方厘米)

  (2)S底:20203.14=1256(平方厘米)

  (3)S表:5526.4+12562=8038.4(平方厘米)

  答:-------。

《面积计算》教案6

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  运用所学知识解答有关平行四边形面积的应用题。

  教具准备:

  卡片

  教学过程:

  一、基本练习

  1.口算。

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的`面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  (1)你能找出图中的两个平行四边形吗?

  (2)他们的面积相等吗?为什么?

  (3)生计算每个平行四边形的面积。

  (4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习第10题:已知一个平行四边形的面积和底,求高。

  分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  第7题。

  四、小结

  本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

《面积计算》教案7

  教学内容:

  《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”

  教学目标:

  1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点:

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学准备:

  课件、图片等。

  教学过程:

  一、 创设情境,引导探索

  师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

  生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

  生2:这条小鱼的面是由两个三角形组成的。……

  师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

  【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

  二、探索活动,寻求新知

  师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

  图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:队旗的面是由一个梯形和一个三角形组成的。……

  师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。

  生2:有几个平面图形组成的图形是组合图形。……

  师小结:组合图形是由几个简单的图形组合而成的。

  图一:是由三角形、长方形、加上长方形中间的正方形组成的,

  面积 = 三角形面积+长方形面积-正方形面积

  图二:是由两个三角形组成的。

  面积 = 三角形面积+ 三角形面积

  图三:作辅助线使它分成一个大梯形和一个三角形。

  方法一:是由两个梯形组成的。

  师:为什么要分成两个梯形?怎样分成两个梯形?

  引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

  师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

  (板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

  方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

  方法三:作辅助线使它分成一个大梯形和一个三角形。

  (课件分别演示这三种方法)

  分割法 添补法

  师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

  变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

  板书:分割法或添补法(转化):分解成简单图形。

  师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

  师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。

  生2:我想知道组合图形的面积怎样计算。……

  这节课我们重点学习组合图形的面积。

  【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的`内化过程。同时形成强烈的求知欲。】

  三、探讨例题,学习新知

  师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

  例4:右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?

  师:怎样才能计算出这个组合图形的面积呢?

  先让学生思考,再动手计算。

  交流汇报

  方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

  师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

  指名学生找相应的条件。

  在实物投影仪上展出示学生的答案

  ①5×5=25 (平方米)

  ②5×2÷2=5(平方米)

  ③25+5=30 (平方米)

  答:房子侧面墙的面积是30平方米。

  (注意检查做错的同学,找出错的原因。)

  师:除了这种方法,还有同学用别的方法吗?

  方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

  师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案

  长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2

  =35-5 =30(平方米)

  答:房子侧面墙的面积是30平方米。

  方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。

  展示学生的答案

  (5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。

  让学生发表意见。

  小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

  师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

  【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

  对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

  四、利用新知,解决生活中的问题。

  做一做

  刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

  方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)

  方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)

  第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4

  7×6-3×3 =42-9 =33(cm2)

  让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

  练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?

  现在你能帮工人叔叔算算这

  个指示路牌的面积吗?

  【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

  五、课堂评价

  师:这节课你学到了什么?

  结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

  【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

  课堂检测A

  1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

  现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要

  2500元。如果让你决定,你会选择哪家公司?

  2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

  课堂检测B

  1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

  想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

  答案:课堂检测A

  1、50×33+35×12÷2

  =1650+210

  =1860(厘米)

  2、33×26-26×13÷2

  =758+169

  =927(厘米)

  课堂检测B

  1、(40+70)×30÷2-30×15

  =1650-450

  =1200(厘米)

  2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)

《面积计算》教案8

  教学目标

  1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2、养成良好的审题习惯。

  教学重点

  运用所学知识解答有关平行四边形面积的应用题。

  教学难点

  运用所学知识解答有关平行四边形面积的应用题。

  教学准备

  三角板,直尺等。

  教学过程

  一、基本练习

  1.口算。

  4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49

  530+270 3.5×0.2 542-98 6÷12

  2.平行四边形的面积是什么?它是怎样推导出来的`?

  3.口算下面各平行四边形的面积

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,

  再求共收小麦多少千克:7000×1.95=13650千克

  ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  三、巩固练习

  1.测量右图中平行四边形的一条底边和它对应的高,

  并计算它们的面积。

  2.分别计算图中每个平行四边形的面积,

  你发现了什么?(单位:㎝)

  四、总结全课

  通过本节课的练习,你有什么收获?你还有哪些疑难问题?

  五、作业

  优化作业。

《面积计算》教案9

  教学内容:教材第101页面积计算和练一练,练习十九第6~15题,练习十九后的思考题。

  教学要求:使学生加深理解和掌握已经学过的面积计算公式,进一步了解这些计算公式的推导过程及相互之间的联系,能正确地进行面积的汁算。

  教学过程:

  一、揭示课题

  1.口算。

  出示练习十九第6题,让学生口算。

  2.引入课题。

  这节课,我们复习学习过的面积计算。(板书课题)通过复习,要弄清面积计算公式的推导过程和相互之间的联系,能应用公式进行面积计算。

  二、整理公式

  1.提问:什么叫面积?我们学过哪些图形的面积计算?

  面积的计量单位有哪些,你能说一说平方厘米、平方分米和平方米的大小吗?

  2.整理公式。

  出示第101页的图形。说明:这里的一组图形,表示了相应的面积计算公式的推导过程。请同学们看着第101页上这样的图想一想

  每种图形面积计算公式怎样得到的,再把面积公式填在课本上,然后告诉大家这些公式和它们的来源。如果有不熟悉的.,可以相互讨论。让学生填写公式并思考推导过程。

  3.归纳公式。

  指名学生说明相应的计算公式和推导过程,老师板书公式。追问:三角形、梯形面积计算时都要注意什么?(除以2)提问

  从图上看,由长方形的面积计算推出了哪些图形的面积计算公式?由其中的平行四边形面积计算又推出哪些图形的面积计算公式?

  想一想,这些图形的面积计算公式都以哪个图形的面积计算为基础来推导的?指出,我们在推导面积计算公式时,都是以长方形的面积计算为基础。

  后面学习的一些新的图形的面积计算公式都是通过割、补,拼的方法,把它转化为已经能计算面积的图形来推导出来的。

  三、组织练习

  1.做练习十九第7题。

  让学生做在练习本上。

  指名口答算式与结果,老师板书,并让学生说一说是怎样想的。指出:根据三角形面积的推导过程,三角形的面积是等底等高的平行四边形面积的一半。

  2.做练一练第1题。

  小黑板出示,让学生做在课本上。指名口答结果,老师板书在小黑板上,结合让学生说说三角形、梯形和圆的面积是怎样算的。

  3.做练一练第2题。

  指名一人板演,其余学生做在练习本上。集体订正,结合提问学生要怎样换算成公顷。

  4.做练习十九第9题。

  指名一人板演,其余学生做在练习本上。集体订正,让学生说说是怎样想的。追问:这两个图形的周长相等吗?面积呢?你发现哪个面积大一些?有什么想法?(长方形和圆如果周长相等,那么圆的面积大)

  5.做练习十九第13题。

  让学生测量、计算。指名说一说每个图形是怎样想的,怎样做的.

  6.让学生口答第14题,说说用什么方法可以求面积。

  7.做练习十九第15题。

  让学生操作、计算,然后口答长、宽和面积,老师依次板书。

  四、讲解思考题

  请同学们观察刚才不同长方形的长、宽和面积,讨论一下:当长方形周长一定时,长和宽的差的变化与面积的大小有什么关系?讨论后指名学生交流每组的讨论结果。追问:这些不同的长方形里,哪一个图形面积最大?指出:长方形周长一定,长和宽的差越小,面积越大;当它成为正方形时,面积最大。

  五、布置作业

  课堂作业,练习十九第8、11、12题。

  家庭作业:练习十九第lO题。

《面积计算》教案10

  重点难点

  1、使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握梯形的面积公式,能正确地计算梯形的面积,并应用公式解决实际问题。

  2、使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

  教学重点:理解并掌握梯形面积的计算公式

  教学难点:理解梯形面积公式的推导过程

  教学准备(含资料辑录或图表绘制)

  梯形面积的计算

  已学过的图形新图形

  因为平行四边形的面积底×高

  所以梯形的面积(上底+下底)×高÷2

  一、导入

  二、新授

  三、练习

  1、回顾三角形面积公式的推导过程

  2、导入:今天我们继续运用这种方法来研究梯形面积的计算。

  1、教学例6:

  (1)出示例6:

  用例6中提供的梯形拼成平行四边形。

  (2)你认为拼成一个平行四边形所需要的两个梯形有什么特点?

  要使学生明确:用两个完全一样的梯形可以拼成一个平行四边形。

  (3)测量数据计算拼成的平行四边形的'面积和一个梯形的面积并填表。

  如何计算一个梯形的面积?从表中可以看出梯形与拼成的平行四边形还有怎样的关系?

  得出以下结论:

  这两个完全一样的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼成一个平行四边形。

  这个平行四边形的底等于梯形的上底+下底

  这个平行四边形的高等于梯形的高

  因为每个梯形的面积等于拼成的平行四边形面积的一半,所以梯形的面积=(上底+下底)×高÷2

  (4)字母表示三角形面积公式:S=(a+b)h÷2

  1、完成试一试:

  2、完成练一练:

  (1)学生计算后提问:用上、下底的和乘高后,为什么还要除以2?

  (2)结合直观的图形或教具演示,简单

《面积计算》教案11

  一、知识要点

  在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

  二、精讲精练

  【例题1】求图中阴影部分的面积(单位:厘米)。

  【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

  62×3.14× =28.26(平方厘米)

  答:阴影部分的面积是28.26平方厘米。

  练习1:

  1.求下面各个图形中阴影部分的面积(单位:厘米)。

  2.求下面各个图形中阴影部分的面积(单位:厘米)。

  3.求下面各个图形中阴影部分的面积(单位:厘米)。

  【例题2】求图中阴影部分的面积(单位:厘米)。

  【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

  从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

  3.14× -4×4÷2÷2=8.56(平方厘米)

  答:阴影部分的面积是8.56平方厘米。

  练习2:

  1.计算下面图形中阴影部分的面积(单位:厘米)。

  2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

  【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

  答:长方形长方形ABO1O的面积是1.57平方厘米。

  练习3:

  1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

  2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

  3.如图所示,AB=BC=8厘米,求阴影部分的面积。

  【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

  【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

  I和II的面积相等。

  因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

  6×4=24(平方厘米)

  答:阴影部分的面积是24平方厘米。

  练习4:

  1.如图所示,求四边形ABCD的面积。

  2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

  3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

  【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

  【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。

  半径:4÷2=2(厘米)

  扇形的圆心角:180-(180-30×2)=60(度)

  扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

  三角形BOC的面积:7÷2÷2=1.75(平方厘米)

  7-(2.09+1.75)=3.16(平方厘米)

  答:阴影部分的面积是3.16平方厘米。

  练习5:

  1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

  2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

  3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  组合图形面积计算(二)

  一、知识要点

  对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

  二、精讲精练

  【例题1】如图所示,求图中阴影部分的面积。

  【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

  [3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

  (20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  练习1:

  1.如图所示,求阴影部分的面积(单位:厘米)

  2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

  【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

  【思路导航】解法一:先用长方形的'面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。

  3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

  解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

  3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

  答:阴影部分的面积是16.82平方厘米。

  练习2:

  1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

  2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

  3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

  【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

  【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

  空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

  阴影部分的面积:10×10-21.5×2=57(平方厘米)

  解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

  (10÷2)2×3.14×2-10×10=57(平方厘米)

  答:阴影部分的面积是57平方厘米。

  练习3:

  1.求下面各图形中阴影部分的面积(单位:厘米)。

  2.求下面各图形中阴影部分的面积(单位:厘米)。

  3.求下面各图形中阴影部分的面积(单位:厘米)。

  【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

  【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

  既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

  阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

  答:阴影部分的面积是3.87平方厘米。

  练习4:

  1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

  【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

  【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

  3.14×(30×2)×1/4-30=17.1(平方厘米)

  答:阴影部分的面积是17.1平方厘米。

  练习5:

  1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

  2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

  3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《面积计算》教案12

  《三角形面积计算》这节课的内容是在平行四边形面积计算的基础上进行教学的,主要是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算公式,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。根据新课程新理念的要求,教学应该由原来教师单纯的教转变为引导学生学会学习。因此,在教学中我注重引导学生自己动手操作。从操作中掌握方法,发现问题,解决问题。

  一、动手操作,拼一拼,摆一摆 ,创造性的使用教材

  在教学中,我让学生动手操作,分别将三组两个完全一样的三角形拼成一个平行四边形,并比较每个三角形与拼成的平行四边形各部分间的关系,同时在操作中向学生渗透旋转、平移的方法,让学生体验和感知三角形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但是在这个环节上,学生的推导方法太单一,都是将两个完全相同的三角形拼在一起,我是在想老师应不应该点拨其他方法,老师点拨就会导致讲的太多,不讲呢有的学生不好理解。还有就是课堂上学生活动的时间不够多,这是本课中的缺憾。

  二、引导学生发现问题、思考问题,培养合作精神

  在这节课中,并没有直接探讨平行四边形面积公式与三角形面积公式有何不同,三角形面积公式中的'“除以2”是怎么来的两个问题。所以在后面练习的时候有的学生和问出为什么“除以2”。如果再上这节课我会引导学生探讨这个问题,在探讨这个问题时,可采用小组讨论的方式,在讨论中发现问题,解决问题。小组讨论既可培养学生的合作精神,又可活跃课堂气氛。这节课总这个地方处理的不好。

  三、应用公式解决生活中的问题

  新课程非常重视学生在活动中的体验,强调学生身临其境的体验。让学生运用所学三角形面积公式解决实际问题。补充了一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

  总的来说这节课放手让学生自行探究三角形的面积公式这一点,我做得非常大胆,体现了新课程中关于让学生自主学习的理念。但我发现在某些方面仍存在“牵着学生鼻子走”,如学生合作和思考的时间不足,教师讲的过多,提示(暗示)得过多;学生练习时间不够,形式比较少等。在实际教学中,发现学生在推导过程中遇到困难——两个完全一样的钝角三角形和两个完全一样的锐角三角形如何剪拼成学过的长方形,开始相当部分学生无从下手,推导受阻,浪费了一定的时间,使整节课的教学效果受到一定的影响。如何处理好这个环节,是一个非常值得探讨的问题。

  在后面的学习中,我还要重点解决“等底等高的三角形与平行四边形面积”之间的关系这个问题。

《面积计算》教案13

  [ 内容]《义务教育教科书(五·四学制)·数学(三年级上册)》100~102 页。

  [ 目标]

  1. 知识目标:理解和掌握长方形的面积计算公式,并会运用公式正确计算。

  2. 技能目标:通过观察、实验、推理等活动,探究长方形的面积计算公式,体验探究学习的快乐。

  3. 情感目标:提高观察、操作、归纳、推理、解决问题和动手操作的能力,体会数学的价值。

  [评价设计]

  1.通过学生尝试自主探索与教师讲解相结合的活动,让学生经历获取知识的思维过程。检测目标知识与技能的达成。

  2.通过尝试探索公式的环节,经历体验逐步简化、抽象的数学公式的形成过程,培养学生的参与合作的能力、数学思维能力,检测目标2过程与方法和目标3情感态度的达成。

  [教学过程]

  一、提出问题,引入课题

  师:小卧室的面积有多大呢?我们知道小卧室的地面是长方形的,要求它的面积,需会求长方形的面积。怎样求长方形的面积? 我们借助学具来研究一下吧。

  【设计意图】创设贴近学生生活的情境,让学生明白要求小卧室的面积有多大就是求长方形的面积。激发学生探究长方形面积计算公式的欲望,使学生在好奇心的驱使下,经历长方形面积计算公式的探究过程。

  二、动手操作,探究公式

  1. 初步体验长方形的面积

  课件展示回顾:要看一个图形的面积有多大,就是要知道它包含了几个面积单位。

  2. 估测

  (1)出示练习卡1,学生估测它的面积有多大?

  (2)学生想办法验证长方形面积的大小。预设:可以用小正方形摆一摆。

  【设计意图】通过估测增强学生的探究意识,学生想知道答案的积极性立刻被调动起来,同时也为后面的小组合作探究指引了方向。

  师:用多大的小正方形摆呢?怎样摆呢?学生独立思考。

  (3)学生组内交流想法,然后小组合作,助学具,测量出长方形的面积。

  3. 操作探究

  (1)学生操作,教师巡视。

  (2)学生分组交流。

  预设1:我们是用1平方厘米的正方形一个个地把长方形摆满,共用了20个小正方形,长方形的面积就是20平方厘米。

  预设2:我们先沿着长摆了5个小正方形,又沿着宽摆了4个,一共用了5×4=20个小正方形,长方形的面积就是20平方厘米。

  预设3:我们先用尺子量出了长是5厘米,宽是4厘米,在脑子里想象沿着长能摆5个小正方形,沿着宽能摆4个,一共是5×4=20个小正方形,长方形的面积就是20平方厘米。

  (3)课件展示回顾研究过程。

  边思考评价,并提出质疑:虽然它们在操作上有所不同,但想法上却有着共同点,谁发现了?

  学生观看课件依次动态演示3种测量方法。

  教师引导总结:它们都是用小正方形把长方形摆满,再看看长方形里面包含了几个面积单位。

  【设计意图】三个层次的反馈,一方面可以体现逐步简化、抽象的数学形成过程,另一方面也可以体现班级中学生的不同思维实际水平。在顺着学生思维实际展开层次性反馈的同时,一步步逼近5×4的本质,让不同思维水平的学生都有可以“发现”的可能。

  4. 尝试运用

  (1)出示练习卡2,学生估测它的面积有多大?

  (2)它的面积究竟有多大?比一比谁能最先求出它的面积。学生独立完成。

  预设:用量的方法,先量出长是5厘米,想象一行摆5个小正方形,宽是3厘米,想象摆了3行,一共能摆15个小正方形,所以5×3=15平方厘米。

  (学生观看课件动态演示测量和思考的方法)

  【设计意图】通过“比一比谁能最先求出它的面积”,使学生自然地优化了方法。课件的动态演示和老师讲解的过程,再次清晰、有步骤的展现对“5×3”道理的思维过程,有助于学生更好地理解和掌握。

  5. 归纳概括

  小组内交流自己的想法,教师引导学生总结。

  预设:每行个数等于长,行数等于宽,总个数等于长方形的面积,每行个数乘行数等于总个数,所以长乘宽等于长方形的面积。

  【设计意图】通过观察对比,让学生感悟“一一对应”的数学思想,知道每行摆的个数与长方形的长、摆的'行数与长方形的宽、所摆的小正方形的总个数与长方形的面积的一一对应关系,自主探索长方形的面积计算公式,明白“长方形的面积=长×宽”的算理,促进学生对数学的理解。

  6. 验证结论

  问题质疑:是不是所有长方形的面积都等于长乘宽呢?学生拿出练习卡3,任选一个房间进行验证。

  (1)学生操作验证,然后小组内交流做法。

  (2)全班交流验证结果,教师总结:长方形的面积=长×宽

  【设计意图】通过动手操作,探究验证长方形的面积计算公式这一数学活动,充分调动学生参与长方形的面积计算公式推导的积极性,让学生主动建构长方形的面积计算公式的数学模型,让学生体验“做”数学的乐趣。

  三、应用公式,回归生活

  1.巩固练习

  学生独立解决问题1、小卧室的面积有多大?

  解决问题2、书房的面积有多大?并集体交流。

  2.拓展延伸

  师:前几天搬家的时候,我不小心把厨房门上一块面积是24平方分米的长方形玻璃打碎了,我想再割一块和原来面积相等的玻璃,你们能帮我算算看,割的这块玻璃的长和宽可以是多少吗?(图5)

  (1)学生交流,发现规律:只要是长乘宽等于24平方分米的两个数就可以。

  (2)通过测量,这块玻璃的宽是3分米,现在你知道长应该是多少分米吗?为什么?(学生组内交流想法)

  【设计意图】练习的设计由易到难,重在加深学生对这节课所学知识的巩固,特别是拓展延伸题,不仅巩固了求长方形的面积计算方法,而且注重了学生实际能力的培养,提高了学生运用数学知识解决实际问题的能力。

  四、全课总结,深化理解

  师:谢谢同学们帮我解决了这个大难题。这节课,同学们参观了我的新房,还帮老师解决了许多实际问题,在解决问题过程中你有哪些收获呢?(学生交流)

  教师总结:这节课我们通过摆一摆、量一量的测量方法,猜测到长方形的面积可能与长和宽有关,然后我们又通过操作验证,归纳概括出长方形的面积计算方法,并运用计算方法解决了生活中的问题。老师希望大家在今后的学习中能经常运用这种学习方法,不断探索,收获更多的知识。(图6)

  【设计意图】通过回顾所学知识,学生在获得数学知识、技能和活动经验的同时,提升梳理、概括知识的能力。教师的引领不仅帮助学生梳理了知识,更是提炼了学习方法,提升了课堂质量,将知识、方法有效融为一体。

《面积计算》教案14

  教学目标

  重点:Δ

  难点:※知识与技能

  过程与方法

  情感态度与价值观

  Δ使学生进一步熟悉梯形面积的计算公式,熟练地计算不同梯形的面积.

  ※培养学生运用数学知识解决生活中问题的能力.

  教具,学具

  电脑,课件

  课件

  梯形面积的计算练习

  设计思路

  一,复习有关知识,做到有的放失.

  二,通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.

  三,进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

  三,针对学生在学习过程中出现的问题适当的进行补充和强化.

  教学过程

  自我设计

  一,复习梯形面积的计算公式.

  二,基本练习:

  1,求下面梯形的面积:

  上底2米 下底3米 高5米

  上底4分米 下底5分米 高2分米

  2,填空:

  两个完全一样的梯形可以拼成一个( )形,这个拼成的图形的底等于梯形的( )与( )的和,高等于梯形的( ),每个梯形的面积等于拼成的平行四边形面积的( ).

  3,梯形的上底是a,下底是b,高是c,则它的面积 =( )

  4,一个梯形上底与下底的和是15米,高是4米,面积是( )平方米.

  5,一个梯形的面积是8平方厘米,如果它的上底,下底和高各扩大2倍,它的面积是( )平方厘米.

  6,判断:

  1)梯形的面积等于平行四边形的面积的一半. ( )

  2)两个完全相同的直角梯形,可以拼成一个长方形. ( )

  3)一个上底是5厘米,下底是8厘米,高是3厘米的梯形,它的面积是12平方厘米. ( )

  三,提高练习:

  1,练习四第1题.用两个完全一样的梯形拼成一个平行四边形,已知每个梯形的面积是24平方分米,拼成的'平行四边形的面积是多少平方分米

  2,第2题 让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.这几个梯形中,除左起第3个梯形之外,其余的面积都是相等的

  3,第3题 右图是直角梯形,可以通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.

  4,第5题 要注意两个问题:1,统一面积单位;2,讲清楚数量关系.

  5,第6题 先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

  课后反思

  通过基本练习,让学生进一步熟悉公式,明白求面积必须要知道的量是哪些 拼成的平行四边形和原来梯形的关系.进行提高练习,结合练习四第2题,让学生先在小组里说说怎样找出面积相等的梯形.由于这4个梯形的高相等,只要比较它们的商,下底的和是否相等.第3题通过讨论使学生明白:直角梯形中与上,下底垂直的那条腰的长度就是梯形的高.第5题要注意两个问题:1,统一面积单位;2,讲清楚数量关系.第6题先搞清楚水渠和拦水坝的横截面积分别是指图中的哪个部分,分别是什么形状,图中标出的条件又有哪些.在此基础上,再让学生分别进行计算.

《面积计算》教案15

  教学目标:

  1、在解决实际问题的过程中,初步体会用画图来有关长方形面积计算问题的信息,感受画图是解决问题的一种策略,学会解决数量关系比较隐蔽或稍复杂的长方形面积计算问题。

  2、会用画图的方法实际生活的信息,会通过画图的过程进行数量关系的分析,寻找解决问题的有效策略。

  3、进一步积累解决实际问题的经验,增强解决问题的策略意识,发展形象思维和抽象思维,进而获得解决实际问题的成功体验,提高学好数学的信心。

  教学重难点:

  能自觉主动地运用画图的策略解决问题。

  教学过程:

  一画图导入,感受策略

  1、提问:同学们,你们会画一个长方形吗?画画看。

  投影显示:他画的对吗?你觉得画图时要注意什么?

  我们一般是怎样求一个长方形的面积的?

  假如知道了面积和宽,怎样求长?知道了面积和长,怎样求宽?

  适时出示板书:长方形的面积=长×宽

  长方形的长=面积÷宽

  长方形的宽=面积÷长

  2、引导:刚才你们画出了长方形的示意图,也明确了长方形的长、宽与面积这三者之间的关系。这节课我们将学习运用画图的策略来解决稍微复杂一些的面积计算问题。(板书课题)

  二、自主探究,体验策略

  1、出示例题

  默读2遍,读懂题意。

  提问:你从题中知道了哪些信息?要求什么?

  怎么求原来的面积?有头绪了吗?

  2、引导:老师一个建议,用画图的方法题中的.信息和问题,一定会迎刃而解。想不想尝试?

  3、以小组为单位,共同商讨,画出示意图,注意要把所有的信息和问题都到图上去。

  投影显示若干组的图,集体评议。

  你觉得哪一组的图符合了题意,对于我们解题有很大帮助,为什么?

  指着图,理解长变了,增加了3米,宽没变。

  结合图,明确原来的面积、增加的面积、现在的面积各指哪一块。

  4、分析:要求原来的面积,需要知道什么?长知道吗?宽呢?所以关键要求什么?怎么求?

  5、借助图,独自列式计算,尽量用综合算式。

  投影显示一生作业,让其说说每一步求到的是什么?

  6、:反思一下我们的解题思路,我们是用画图的策略来这题的条件与问题的。画图时要注意画出题目所有的意思,这样才有助于我们分析。根据这幅图,我们很容易地看出长增加了,宽不变。只要求出这个宽,就能得到原来的面积了。如果不画图,思路能这么清晰吗?能这么清楚地发现图形之间的关系吗?那这便是画图的好处。

  三、应用策略,体现策略的价值

  1、出示“试一试”

  指名读题,明白题意。

  分析:鱼池有了怎样的变化?什么变了?“减少”在图上该怎样表示?

  你能用画图的策略,独自解决这个问题吗?

  画图之前,老师还想提醒大家,先把题目再看一遍,把题意弄懂了再画图。

  2、学生尝试画图解答。

  3、同桌间互相交流自己的思路,听听别人的想法,说不定能取长补短。

  4、投影显示几个同学的作业,集体评议。

  突出标上所有信息,并让学生说说现在要求的是哪一块面积?

  邀请画图较好的那名同学上台和自己的解题思路。

  5、还有其他方法吗?

  6、:画图后,从图上可以清楚地看出,宽减少了,但长不变。只要通过减少的面积就能就能求出长,再求现在的面积。还可以用原来的面积减去减少的面积求出现在的面积。

  四、课堂练习,巩固应用

  1、谈话:你们已经把画图的策略学到手了吗?

  那你觉得在画图前要注意什么?画图时要注意什么?看图解决问题时又要注意什么?

  2、老师准备了两个关卡,不会给你任何提示,有勇气去闯一闯吗?有志者,事竟成。

  3、第一关:临江中心小学原来有一个长方形操场,长40米。扩建后,长增加了10米,这样操场的面积就增加了300平方米。现在操场的面积是多少平方米?

  4、第二关:临江中心小学原来有一个宽10米的长方形绿化带。改建后,宽减少了3米,面积就减少了210平方米。你知道原来绿化带面积是多少平方米吗?

  5、(留给学有余力的同学)第三关:临江中心小学有一块长方形试验田。如果这块试验田的长增加6米,或者宽增加4米,面积都比原来增加48平方米。你知道原来试验田的面积是多少平方米吗?

  6、集体讲评

  显示不同作业,指名点评说思路,错误的修改好。

  五、延伸

  这节课你有哪些收获?

  反思:

  1、本节课,我根据班级学生的实际情况,对教学内容实施了分课时教学,分散了难点,同时又增加了巩固练习,加深了学生对画示意图解决问题的策略的理解和掌握。

  2、课的开始,安排了“画长方形示意图和明确长方形的长、宽以及面积这三者之间的关系”这一环节,为本节课的学习作两个方面的铺垫,一个是解题策略方面的,另一个是基础知识方面的。这样,就可以为学习有困难的同学降低了难度。

  3、例题的出示是纯文字的,在学生阅读之后,虽对题意有了大致了解,但对其中的数量关系还是比较模糊的。这时,我便适时给出建议:用画图的方法题中信息。至于如何画、怎样以及对画出的图的,因课标指出“要让学生自己动手实践、操作,在操作中理解并获得知识。”所以我便根据班级实际,给了学生尝试的机会,放手让他们自己画图,充分发挥小组智慧后再集体交流碰撞,上完后发现效果不错。因此适当的时候必要的放手,还是很有好处的,而且说不定还会有意想不到的收获。

  4、赞扬的激励作用。新课程关注每一个学生的发展,赞扬也一样不能只给优等生,课上我有意识的去搜寻学困生的点滴进步,及时给予肯定和鼓励,如“今天的书写格外认真”“为这么好的策略鼓掌”“你敢于发言,老师佩服你”等等,中肯的话语我相信会使他们同样沐浴着被赏识的阳光雨露,从而与优等生共同进步,共同发展。

  5、板书方面有所欠缺,因只考虑了要发挥学生的合作意识,发展自主探究能力,所以频繁使用了投影仪,而忽略了板书的美观。

【《面积计算》教案】相关文章:

《面积计算》教案06-13

长方形面积的计算教案09-13

《三角形的面积计算》教案09-15

面积与面积单位教案05-31

《面积》教案04-24

面积的教案11-19

平行四边形面积的计算教案04-15

梯形的面积教案04-12

精选面积和面积单位教案三篇08-05