平行四边形的面积教案

时间:2024-06-13 14:38:00 教案 我要投稿

平行四边形的面积教案

  作为一位不辞辛劳的人民教师,编写教案是必不可少的,教案是教学蓝图,可以有效提高教学效率。那么你有了解过教案吗?下面是小编精心整理的平行四边形的面积教案,希望能够帮助到大家。

平行四边形的面积教案

平行四边形的面积教案1

  教学内容:人教版第九册 64 – 67页

  说教材: 教材先给出方格上的平行四边形和长方形,从数图形中的方格引出平行四边形的面积。利用数方格的方法来计算面积仍然是一种计算面积的方法。遇到图形中边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。,教材通过数的方法,转化的方法,可以把新知识转化为旧知识,从而使新问题得到解决。

  教学重点:平行四边形面积的推导过程。

  本课采用的教法:自学法 、 转化方法、小组合作法、实验法。

  学法:1、自主学习法

  2、小组合作探究学习法。

  教学程序:

  一、创设问题情景, 为新课作铺垫。

  请同学们帮李师傅的一个忙,

  求出下面的面积,你是怎样想的?3厘米

  5厘米

  二、突出学生主体地位,发展学生的创新思维。

  首先采用自学课本64页。师提出问题,通过自学,同学们发现了什么,想到了什么?你猜到了什么?

  有的同学说:长方形面积与平行四边形面积相等(数出来的)。 有的说:我用割补的方法把平形四边形拼成一个长方形,长方形的面积与平行四边形面积相等。还 有的说:我发现平行四边形的底相当与长方形的长,平行四边形的高相当长方形的宽。 有的说:我猜想平行四边形的`面积等于底乘高。通过同学们发现与猜想

  三、小组合作,培养学生的合作精神。

  小组合作交流,动手操作并说出你的思考过程这样使学生能人人参与,个个思考。汇报交流结果(小组派出代表到前边演示操作过程边述说)学生甲:我沿着平行四边形的高剪下一个三角形补到平行四边形的右边,拼成一个长方形。长方形的长相当与平形四边形的底,宽相当与平行四边形的高。长方形面积与平行四边形的面积相等。我想平行四边形面积=底乘高

  学生乙(与前边的内容大概相同复述一遍,就是平行四边形的高作在中间)

  学生丁我还有一种方法,我将平行四边形沿着对角划一条线,分成两个面积相等三角形,虽然拼成还是一个原平行四边形。但学生争着说出与别人不同的方法,把自己的想法尽量展现在同学面前,其中不乏有闪光的思维亮点。

  四例题独立完成,体现学生自己解决问题的能力。

  例题自己解决, 学生切实体验到数学的应用价值,提高学生学习数学信心。

  板书设计:

  长方形面积==长乘宽

  平行四边形面积=底乘高

  s= a h

平行四边形的面积教案2

  1.平行四边形面积的计算。

  编排意图

  教材分三个步骤安排。

  (1)引入。从主题图中学校大门前的两个花坛(一个长方形,一个平行四边形)引入一个实际问题:两个花坛哪一个大?也就是要计算它们的面积各有多大。长方形的面积学生已经会计算,从而提出如何计算平行四边形面积的问题。

  (2)用数方格的方法计算面积。这是一种直观的计量面积的方法,在学习长方形和正方形面积计算时学生已经使用过,但是像平行四边形这样两边不成直角的图形该如何数?对学生讲是一个新问题。教材给出提示,不满一格的都按半格计算。教材安排同时数一个长方形和一个平行四边形的面积,再对它们的底(长)、高(宽)和面积进行比较,暗示这两个图形之间的联系,为学生进一步探寻平行四边形面积的计算方法做准备。

  (3)探究平行四边形面积计算公式。提出“不数方格能不能计算平行四边形的面积呢?”通过学生动手操作,用割补的方法把一个平行四边形转化为一个长方形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。

  最后把面积计算公式用字母表示。

  教学建议

  (1)结合引入环节进行长方形面积计算和平行四边形概念的复习。

  (2)数方格和填表环节要让学生独立完成,然后让学生交流一下是怎样数的和数的结果。有的学生可能用把斜边上的不满一格的两个格拼成一个方格的方法,也应给以肯定。要组织学生对填表的结果进行讨论,学生比较容易发现两个图形的底与长、高与宽和面积分别相等。教师可以进一步提问:根据你的发现你能想到什么?培养学生联想、猜测的能力,同时为下一步的探究提供思路。

  (3)探究平行四边形的面积公式是本课的重点。可以用提出假设——动手实验——推导——概括的步骤开展探究活动。

  第一步根据上面的`讨论提出假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

  第二步组织学生动手实验,要求每个学生准备一个平行四边形和一把剪刀。教师注意巡视和进行个别指导。学生一般会出现以下两种割补的方法,都应给以肯定。

  第三步小组讨论:观察拼出的长方形和原来的平行四边形你发现了什么?这是本课教学的关键,也是学生学习的难点。有些学生可能不知怎样去思考。可以出示一些问题引导学生思考。

  ①拼出的长方形和原来的平行四边形比,面积变了没有?

  ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

  ③你能根据长方形面积的计算公式推导出平行四边形的面积计算公式吗?

  第四步进行全班交流,要求学生叙述出自己的推导过程。

  在此基础上利用多媒体课件或教具进行演示(如第81页的图),注意在演示过程中显示平移的方法。边演示边推导:

  我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。

  这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。

  2.平行四边形面积计算公式的应用。

  可以先让学生试做,再通过集体订正检查掌握情况。

  3. 关于练习十五一些习题的说明和教学建议。

  第1、4题是应用问题,第1题直接应用公式计算。第4题要进行面积单位的化聚和除法计算。可在分析讨论题意的基础上让学生独立完成,再交流做法和结果,强调注意面积单位的变化。

  第2题要求学生自己想办法求出平行四边形的面积,有一定的探索性。学生需要先画出平行四边形一边上的高,再量出底和高的长度,最后应用公式进行计算。

  可以让学生先讨论再计算,也可让学生先独立做,再交流方法和结果。注意引导学生知道可以以不同的边作底来求出面积。

  第3题是逆用公式的题目,已知平行四边形的面积和底,求高。引导学生依据乘除法的互逆关系学会灵活运用公式或列方程解答。

  第5题认识等底等高的平行四边形的面积相等。先不要学生计算,引导学生讨论它们的面积相等吗?并说明理由(两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等)。

  第6题与第5题的道理相同,正方形与平行四边形等底等高,所以它们的面积相等。已知正方形的周长,可以求出正方形的边长,再求出正方形的面积,也就是平行四边形的面积。可以让学生先讨论,再解答。

  第7题借助课本上的示意图或做实物教具进行演示,让学生观察,讨论什么不变,什么发生了变化(四条边的长度不变,底边上的高发生变化)。从而得到它们的周长不变,但面积变了。还可以进一步讨论,面积怎样变化?什么情况下面积最大?

  第8题是选作题。根据A、B是大平行四边形上下两边的中点,可以证明阴影部分也是一个平行四边形。鉴于学生还没有这方面的知识,题中直接说明它是一个平行四边形。要求出小平行四边形的面积,必须知道它的底和高的长度,题中没有给出。但从A、B是大平行四边形上下两边的中点,可以推出小平行四边形的底是大平行四边形底长的一半,它们的高相等,所以小平行四边形的面积是大平行四边形面积的一半,即48÷2=24(cm2)

平行四边形的面积教案3

  教材分析:

  平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

  几何初步知识的'教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

  教学目标:

  1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。

  2、掌握平行四边形面积计算公式并能解决实际问题。

  3、培养学生初步的空间观念。

  4、培养学生积极参与、团结合作、主动探索的精神。

  教学重点:平行四边形面积的计算。

  教学难点:平行四边形面积公式的推导过程。

  教学准备:学具。

  教学过程:

  一、质疑引新

  1、显示长方形图

  长方形的面积怎样求?

  2、电脑展示长方形变形为平行四边形。

  原来的长方形变成了什么图形?它的面积怎样求呢?

  二、引导探究

  (一)、铺垫导引

  出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。

  小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?

  实验、操作(小组合作):把后两幅图转化成长方形

  电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。

  集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)

  讨论:

  剪拼前后,图形的形状变了没有?面积有没有变?

  做了这个实验你想到了什么?

  (二)、实验探索

  刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?

  学生实验操作

  1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。

  2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。

  3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。

  结合学生发言提问:

  你在平行四边形上沿哪条线段剪开的?

  这条线段实际上是平行四边形的什么?

  在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。

  (三)总结归纳

  问:

  1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?

  2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)

  得出:平行四边形面积=底×高

  追问:要求平行四边形的面积,必须知道哪两个条件?

  用字母表示公式

  学生自学P44~P45有关内容

  集体交流:S=a×h

  S=a·h

  S=ah

  教师强调乘号的简写与略写的方法

  三、深化认识

  1、验证公式

  学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。

  2、应用公式

  a) 例题

  学生列式解答,并说出列式的根据。

  b) 做练一练

  四、巩固练习

  1、求下列图形的面积是多少?

  底5厘米,高3。5厘米 底6厘米,高2厘米

  2、计算下面图形的面积哪个算式正确?(单位:米)

  3×8 3×6 4×8 6×8 3×4 4×6

  3、求平行四边形的高是多少?

  面积:56平方厘米

  底:8厘米

  4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

  以小组为单位探讨多种想法

  五、总结全课(电脑显示、学生口答)

  把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。

平行四边形的面积教案4

  教学目标:

  通过看一看、剪一剪、拼一拼、比一比、算一算,使学生理解并掌握平行四边形的面积公式,并能进行简单的平行四边形的面积计算。

  教学过程:

  一、看一看:得出平行四边形与长方形的关系。

  1、让生看P69,观察方格纸上的长方形和平行四边形,并填写:

  每个小方格代表1平方厘米(不满一格的,都按半格计算),数一数,长方形的面积是( )平方厘米;平行四边形的面积是( )平方厘米。

  2、观察并讨论:这个长方形和平行四边形有怎样的关系?

  在学生讨论、回答的基础上小结得出:长方形的长和平行四边形的底相等,长方形的高和平行四边形的高相等。

  二、剪一剪、拼一拼、比一比、算一算,得出平行四边形的面积公式。

  1、出示:平行四边形,请你想想办法,怎样求它的面积。(让生每人先准备两个平行四边形)

  2、让生小组讨论,尝试。

  3、检查学生讨论的结果。如果有学生想出,让他到讲台上给其他同学介绍。

  (1)沿着平行四边形的一条高,剪下来,移到右边拼拼。

  (2)比一比:这两个图形有什么关系?什么变了,什么没变?

  这两个图形形状变了,但面积相等

  (3)请你量一量长方形的长与宽,算出它的面积。

  (4)根据刚才的学习,你能不能得到这个平行四边形的`面积?那么你能不能得出平行四边形面积的计算公式,你是怎么想出来的?

  4、总结得出

  长方形的面积=长×宽

  平行四边形的面积=底×高

  如果用S表示平行四边形的面积,用A和H分别表示平行四边形的底和高,那么,平行四边形的面积计算公式可以写成:

  S=ah

  5、例:有一块平行四边形的草地,底是18米,高是10米,这块草地的面积是多少?

  (1)让生独立做。

  (2)检查:18×10=18(平方米)

  (3)注意:面积单位。

  6、看书,质疑。

  三、练习

  1、口算下面每个平行四边形的面积。

  底(厘米)

  50

  12.5

  100

  9

  高(厘米)

  40

  8

  36.4

  4

  面积(平方厘米)

  2、计算下面平行四边形的面积。

  12米

  24米40厘米15米

  25米

  50厘米

  3、有一块平行四边形的玻璃,底48厘米,高36厘米,它的面积是多少平方厘米?

  4、有一块平行四边形的菜地,底120米,高比底少40米,这块地的面积是多少?

  四、总结。

  五、课堂作业

平行四边形的面积教案5

  教学内容

  人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

  教学目标

  1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学过程:

  一、情境激趣

  1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

  2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

  3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

  提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

  4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

  二、自主探究

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的`面积等于底乘高。

  (7)提出猜想:平行四边形的面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (4)利用课件演示把平行四边形变成长方形过程。

  (5)观察并思考以下两个问题:

  A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  (2)学生独立完成并反馈答案。

  三、看书质疑

  四、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

  五、巩固运用

  1.练习十五第1题,让学生独立完成后反馈答案。

  2.你会计算下面平行四边形的面积吗?

  3.你能想办法求出下面平行四边形的面积吗?

  4.练习十五第3题。

  六、全课小结(略)

平行四边形的面积教案6

  一、谈话导入

  1、组织课堂纪律

  2、比眼力游戏:哪个图形面积大

  学生1、

  学生2、

  学生3、

  学生4.、

  师演示,全体同学看

  3、小结:转化法:拼、补

  二、用上面的方法学习新知识

  1、停车位。哪个大?学生1、学生2、学生3、引导学生说出要算面积,才知道哪个大。

  2、揭示课题,板书

  1、长方形的面积只要量出什么就可以算出来?

  2、猜想平行四边形的面积要量出什么?

  学生1:底、高

  学生2:邻角(边)

  豆豆猜想:邻边x邻边=平行四边形面积

  3、课件演示:平行四边形变化

  引导学生说:面积越来越小,邻边不变。说明:面积与邻边有什么关系:(排除第二种猜想)

  4、学生操作:(1个同学数,1个同学填表格)

  (1)用数表格方法求平行四边形的面积

  学生1、平行四边形面积=底x高

  (2)挑战:没有方格怎样验证底x高=平行四边形面积

  学生忙着量、师及时提示,转化。

  学生2/、演示、解说

  问题:从哪里剪,还可以从哪里

  师演示,学生观察,什么变了,什么不变,变成了什么?有什么关系?

  长方形面积=长x高

  平行四边形=底x高

  S=axh

  (3)解决停车位问题

  1、要测量长和宽(长方形)底和高(平行四边形)

  2学生算

  学生1:(及时表扬)

  三、出示

  1、学生1:15x812x8

  2、为什么12cm也是底,12x8不对?

  3、对应的高

  (5)、小小设计师

  1、在小方格纸里画出一个12平方cm的平行四边形

  2、学生展示,说说画得的原因与大家分享。

  学生2、

  (3)扩展延伸,底是2cm,高是6cm可以画多少种?(无数种)它的底都2cm高都是6cm.说明面积怎样。

  四、总结:

  学生总结,今天这节课你学习有什么收获。

  评析:刘老师通过引导学生比较不规则图形,分别让学生1、学生2、学生3、学生4、说并说理由,顺势引出转化法,并让转化贯穿于整节课,参透转化思想,这是空间与图形学习的重要而常用的方法。

  通过让学生比较长方形与平行四边形停车位哪个大?来让学生产生需要求图形面积的需求,顺势引出平行四边形的面积一、计算,揭示课题。要算长方形的面积只要量出长和宽就可算出来,进而让学生猜想平行四边形的面积计算要量出什么?与什么有联系?引导学生积极猜想,学生1、量出底和高,就可以算出面积,学生2、学生3说量出两条邻边就可以算出来,针对以上两种猜测,教师课件演示平行四边形四边不变,高矮变化的情况,让学生仔细观察,讨论:平行四边形的什么变了,什么不变,说明面积与什么没有关系。排除第2种猜想,重点探究底1种猜想接着让学生用数表格的方法求平行四边形的面积并填写观察表内数据找出规律。学生1、学生2、说平行四边形面积=底x高,进而引导学生验证。让学生操作,经历平行四边形转化为长方形的'过程。一开始,学生忙着量,教师及时提示,学生马上明白,通过操作转化为另一种已学过的图形。学生1、学生2、上台演示解说过程。紧接着,师问:从哪里剪?还可以从哪里剪?引导学生悟出平行四边形有无数条高,从哪条高剪都可以。课件演示让学生观察,转化过程中,什么变了,什么不变,变成了什么,有什么联系,让学生看清楚平行四边形变成长方形,面积不变,长方形的长和宽相当于平行四边形的底和高。使学生经历平行四边形转化为长方形的具体过程。学生掌握平行四边形的面积,计算公式水到渠成,用字母s=ah表示。经历知识形成过程是新课标强调的内容。在这个过程,转化的方法和思想赶着重要作用。

  练习环节,循序渐进,第1题强调平行四边形面积时,要找到对应的底和高。第2题小小设计师,开放题,学生通过努力细心观察可以完成得很好。

  这节课你有什么收获,让学生自己总结,改变了以往教师小结的习惯。

  建议:在剪三前,要让学生找出平行四边形的高,沿着高剪。找不到高,转化为长方形难以操作。如:引导学生悟出无数条高,许多学生还需要时间和空间。

  值得借鉴之处:

  1、让学生动手操作,经历知识重要过程,体现注重过程的观点。如:1、用数表格的方法求平行四边形的面积,观察结果找规律,初次感知计算方法。

  2、验证计算方法,参透转化思想,空间与图形的探究和学习的重要方法是转化。为后面学习三角形、梯形面积计算奠定了基础。

  3、著于引导学生质疑,引发知识冲突,促使学生积极参与活动。如:要比较长方形与平行四边形车位哪个大?使学生产生求它们的面积需求。长方形学习过,可以求,那么平行四边形呢?进而让学生猜测。然后引导学生观察排除猜想。在转化过程中,引导学生观察比较,什么不变,什么变了,变成了什么,有什么联系。如:从哪里剪?还可以从哪里剪?

  4、课堂组织方式较好。

平行四边形的面积教案7

  教学内容:人教版第十册第66-66页的内容,完成练习十六的第1-3题。

  教学目标:

  1、使学生能运用树方格、割补等方法探索平行四边形面积的计算公式,初步感受转化的思想。

  2、让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  3、培养学生观察、分析、概括、推理能力,发展学生的空间观念。

  4、培养学生的合作意识和探索创新精神。

  教学重点:学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  教学难点:探索、推导平行四边形面积的计算公式。

  教具、学具准备:

  教具:有关平行四边形面积计算的多媒体及课件、视频展示台。

  学具:每组准备2-3个纸剪的平行四边形和一个近似的平行四边形。

  教学过程:

  一、复习引入。

  1、课件出示长方形。提问:指出它各部分的名称,会求它的'面积吗?只要量出它的什么的尺寸就能计算?

  2、演示:把长方形拉成平行四边形。提问:这又是什么图形?它有什么特征?会求它的面积吗?

  二、探索新知。

  1、用数方格的方法计算平行四边形的面积。

  同桌合作,讨论完成再汇报。

  出示思考题:

  (1)长方形的长是多少?宽是多少?面积是多少?

  (2)平行四边形的面积是多少?

  (3)比较图中平行四边形的底和长方形的长,发现了什么?

  (4)比较图中平行四边形的高和长方形的宽,发现了什么?

  过渡:不数方格,能不能计算平行四边形的面积呢?我们来做个实验。

  2、探索平行四边形面积的计算公式。

  (1)小组动手操作,将平行四边形转化成长方形。小组合作时,教师巡视,参与指导。

  (2)把有代表性的几组作品贴在黑板上。

  思考:不论沿平行四边形的哪条高剪开,拼成的平行四边形与长方形都有关系?

  学生回答,教师板书:

  长方形的面积 = 长 × 宽

  平行四边形的面积= 底 × 高

  3、用字母表示平行四边形面积的计算公式。

  (1)学生看书交流。

  (2)教师板书:S=a×h

  =a·h

  =ah

  3、要求平行四边形的面积,知道它的什么条件就可以了?

  4、运用公式计算平行四边形的面积。

  (1)出示例1

  读题后让学生想:根据什么列式?对得数有什么要求?学生独立完成。

  (3)完成第66页的"做一做"。

  三、巩固练习。

  1、练习十六第1题。

  2、练习十六第3题。

  四、全课总结。

  1、这节课我们研究了一个什么问题?

  2、怎样求平行四边形的面积?这个面积公式是怎样推导出来的?

  3、小组评价。

  五、作业。

  练习十六第2、5题。

平行四边形的面积教案8

  教学内容:

  义务教育六年制小学《数学》第九册P64-P66

  教学目的:

  1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积,数学教案-平行四边形面积计算。

  2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

  3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  4、培养学生自主学习的能力。

  教学重点:

  掌握平行四边形面积公式。

  教学难点:

  平行四边形面积公式的推导过程。

  教具、学具准备:

  1、多媒体计算机及课件;

  2、投影仪;

  3、硬纸板做成的可拉动的长方形框架;

  4、每个学生5张平行四边形硬纸片及剪刀一把。

  教学过程:

  一、复习导入:

  1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

  2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

  3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

  二、质疑引新:

  1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

  2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

  3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

  4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

  三、引导探求:

  (一)、复习铺垫:

  1、什么图形是平行四边形呢?

  2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

  3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

  (二)、推导公式:

  1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

  2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

  4、学生实验操作,教师巡视指导。

  5、学生交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、微机演示各种转化方法。

  6、归纳总结规律:

  沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的`图形面积怎样计算?得出:

  因为:平行四边形的面积=长方形的面积=长×宽=底×高

  所以:平行四边形的面积=底×高

  (板书平行四边形面积推导过程)

  7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

  四、巩固练习:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

  2、练习:

  ⑴、(微机显示例一)求平行四边形的面积

  ⑵、判断题(微机显示,强调高是底边上的高)

  ⑶、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

  ⑷、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

  五、问答总结:

  1、通过这节课的学习,你学到了哪些知识?

  2、平行四边形面积的计算公式是什么?

  3、平行四边形面积公式是如何推导得出的?

  六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

平行四边形的面积教案9

  教学内容:

  教材P87~88例1及练习十九第1、2、3题。

  教学目标:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:通过剪、摆、摆等活动,让学生主动探究平行四边形的面积的计算公式。

  情感、态度与价值观:培养学生初步的空间观念,及积极参与、团结合作、主动探索的精神。

  教学重点:

  掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算。

  教学难点:

  理解平行四边形的面积公式的'推导过程。

  教学方法:

  迁移式、尝试、扶放式教学法

  教学准备:

  师:多媒体。生:剪刀、直尺、平行四边形纸片、练习本。

  教学过程:

  课前预习案

  1、长方形周长= 长方形面积=

  正方形周长= 正方形面积=

  2、把一个用木条钉成的长方形拉成一个平行四边形,周长( ),面积( )。

  一、知识铺垫

  1、 长方形的面积计算公式是( )。

  2、长方形的长是8厘米,宽是6厘米,它的面积是( )。

  3、什么是平行四边形?平行四边形有哪些特征?

  4、在右图中标出平行四边形的底并画出它的高。

  二、自主探究

  1.探究活动一:用数方格的方法计算平行四边形的面积。

  (1)数方格。数一数平行四边形和长方形分别是多少平方厘米?(说明:一个方格表示1㎡,不满一格的都按半格计算)

  考:仔细观察表格中的数据,你发现了什么?

  我的发现: 。

  (4)一个近似平行四边形的池塘,还能用数格子的方法求它的面积吗?你对这种数方格方法有什么感受?

  2、 探究活动二:探究推导平行四边形面积计算公式。

  (1)讨论并交流:怎样把平行四边形转化为我们已学过的图形?

  (2)操作:动手把平行四边形沿高剪开,平移,拼成长方形。

  展示:把你的剪拼过程先在小组内与同学交流,再全班交流。

  沿着平行四边行的一条高剪断,两部分再组合在一起就拼成了一个长方形。

  (4)比较:拼成后的长方形与平行四边形之间的关系,并写出来。

  把一个平行四边形转化成一个长方形,平行四边形的底和长方形的( )相等,平行四边形的( )和长方形的( )相等,它的面积与原来的平行四边形面积( ),这两个图形的面积( )。

  (5)概括:平行四边形面积= ,用字母表示为: 。

  3、应用面积计算公式计算平行四边形的面积。

  出示教材第88页例1。学生读题,理解题意;独立完成;教师板书。

  三、课堂达标

  1、判断、

  (1)两个平行四边形的高相等,它们的面积就相等、。 ( )

  (2)平行四边形的底越长,它的面积就越大。 ( )

  (3)一个平行四边形的底是12m,高是4dm,它的面积是48㎡。 ( )

  (4)面积相等的两个平行四边形一定等底等高。 ( )

  2、计算下列各个平行四边形的面积。

  (1)底=9cm,高=5cm

  (2)底=6、4dm,高=3、4dm

  3、有一块平行四边形的麦田,底是250米,高是84米,共收小麦14、7吨。这块麦田有多少公顷?平均每公顷收小麦多少吨?

  4、 完成教材第89页“练习十九”

  第1题。生读题理解题意,直接利用平行四边形面积公式完成,指名板书。

  第2题。可先让学生试着做,再通过集体订正检查掌握情况。

  第3题。本题利用表格形式呈现目的是强调基本形式的练习,生独立完成集体反馈。

  四、课堂小结

  师:这节课你学会了什么,有哪些收获?引导总结:把平行四边形转化成长方形可以推导出平行四边形的面积公式:平行四边形的面积=底×高

  布置作业:

  板书设计:

  平行四边形的面积

  长方形的面积=长 × 宽 例1 S =ah

  平行四边的面积=底 × 高 =6×4

  S a h =24(m2)

平行四边形的面积教案10

  教学内容:课本第72页。

  教学要求:使学生能比较熟练地应用平行四边形的计算公式,解答有关问题。

  教学过程:

  一、复习。

  1.平行四边形面积计算公式是什么?它是怎样推导出来的?(平行四边形的面积=底×高,是通过把平行四边形割补成长方形推导出来的)

  2.填空。

  0.28平方米=()平方分米=()平方厘米

  32000平方米=()公顷

  0.5平方千米=()公顷。

  3.求下面平行四边形的面积。(口答)

  (1)底18厘米,高10厘米

  (2)底25分米,高4分米

  (3)底12.5米,高8米

  (4)底16米,比高多6米

  (5)底和高都是30厘米

  二、新授。

  1.揭示课题。

  师:昨天我们学习了平行四边形的面积计算公式,今天我们就来应用这一公式来解决一些题目。(板书:平行四边形面积公式的应用)

  2.出示例题。

  一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  学生口述解题思路:求钢板的面积就是求平行四边形的面积。

  学生独立解答

  4.8×3.5?17(平方米)

  答:它的面积约是17平方米

  补充问题:如果这块钢板每平方米重3.9千克,钢板重多少千克?

  总重量=每平方米重量×平方米数

  学生试做。

  集体评讲。

  钢板重量:3.9×17=66.3(千克)

  三、巩固练习。

  1.P72页做一做。

  通过书面练习第1题达到巩固求平行四边形面积的计算能力。

  指导书本第2题近似平行四边形的计算方法:把不规则的近似四边形的四条边,用直线取直成为一个假设中的平行四边形。找出相应的底和高的数值即可求出它的近似面积。

  2.练习十七第6题。

  先让学找出图中的两个平行四边形,然后提问:这两个平行四边形的底和高分别是多少?求它们的.面积我们根据什么公式来求?(底是2.5厘米,高是1.6厘米,根据S=ah来求)

  学生独立计算后,问:这两个平行四边形的面积相等吗?为什么?(它们的底和高分别相等)

  得出:底和高分别相等的平行四边形,面积也相等。

  判断:下面的平行四边形面积相等吗?

  3.练习十七第7题。

  学生独立完成。集体核对。

  4.练习十七第8题。

  先引导学生观察这一道题与刚讲的例题有什么相同点。要解决这个问题要先求什么?(先求这块菜地的面积。

  四、作业。

  练习十七第9题。

  五、补充练习。

  已知一个平行四边形的面积是28平方米,底是7米,求高是多少?

  引导学生思考:因为:a·h=S

  所以:h=S÷a

平行四边形的面积教案11

  一、所在班级情况,学生特点分析

  本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

  二、 教学内容分析

  平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

  三、 教学目标

  1、 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

  四、 教学难点分析

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

  教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

  五、 教学课时

  一课时。

  六、 教学过程

  (一)复习

  1、做一做,说一说。

  师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

  学生做 — 教师巡视 — 同桌互相评价 — 个别台前讲说。

  2、复习长方形面积计算公式

  我们学过长方形面积的计算公式,谁能说出长方形面积的计算

  公式?

  生:长方形面积=长×宽

  师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

  (板书课题)

  (二)推导平行四边形的面积公式

  1、数方格法:

  师:这儿有两个图形,请同学们比较它们的大小。

  出示课件(图1):

  要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

  教学活动:

  (1)数出平行四边形和长方形的面积各是多少?

  (2)平行四边形的`底和高各是多少?

  (3)长方形的长和宽各是多少?

  (4)通过数方格,你发现了什么?

  (平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

  上面我们用数方格的方法得出平行四边形的面积,在实际的生活中,要求

  的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

  2、割补法:

  (1)学生用学具演示。

  师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

  教学活动:

  学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

  (2)教师用教具演示。

  同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

  出示课件(图2)。

  教学活动:

  在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。

  3、推导、归纳平行四边形的面积计算公式:

  把一个平行四边形转化成一个长方形,什么变了,什么没变?

  (形状变了,面积没有变。)

  也就是说拼成后长方形的面积和原平行四边形的面积相等。

  拼成后的长方形的长与平行四边形的底有什么关系?(相等)

  长方形的宽和原平行四边形的高有什么关系?(相等)

  在问答过程中,出示课件(图3)。

  师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

  板书:平行四边形的面积=底×高

  请看课件(图4):

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

  学生口述,教师板书:

  S=a×h

  师:一般含有字母的式子里,乘号可以用“·”表示,读作a乘h,板书:

  S=a·h

  也可以把乘号省略不写,板书:

  S=ah

  学习活动:

  将上面公式请同桌同学互相说说。

  (通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

  要计算平行四边形的面积,必须知道几个条件,是什么?

  (两个条件,底和高。)

  七、课堂练习

  1、运用公式,尝试学习。

  师:请同学们打开课本24页,看“试一试”题目:

  出示课件(图5)。

  (在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

  2、巩固练习,拓展学习。

  (1)选择正确的答案。

  出示课件(图6)。

  师:在上面A、 B、 C三个平行四边形中哪一个的面积是: 2×3=6(平方厘米),并说出理由。

  (A:错误,因为3和2是两条邻边,不是对应的底和高;

  (B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

  (C:正确。

  (通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

  3、操作观察,探究学习。

  出示课件(图7)。

  如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)

  (引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

  定相等。)

  讨论:

  当两个平行四边形的面积相等时,它们的底与高是否也相等?

  (平行四边形的面积相等,底与高却不一定相等。)

  八、作业安排

  课本24页“练一练”,第3题、4题。

  九、附录(教学课件)

  十、教学反思

  平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

  课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

平行四边形的面积教案12

  教学目标:

  1、知识与能力目标:通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确求平行四边形的面积。

  2、过程与方法目标:让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法。

  3、情感态度与价值观目标:培养学生的分析、综合、抽象、概括和解决实际问题的能力;使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。

  教学重点:

  探究并推导平行四边形面积的计算公式,并能正确运用。

  教学难点:

  平行四边形面积公式的推导方法――转化与等积变形。

  教学方法:

  利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过剪、移、拼找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。

  教具、学具准备:

  多媒体课件、平行四边形纸片、长方纸卡,剪刀等。

  教学过程:

  一、情境激趣

  二、自主探究

  古时候,有一位老地主给他的两个儿子分地,大儿子分了一块长方形的地,小儿子分得了一块平行四边形的'地。可是两个儿子都觉得自己分的地太少,对方的土地多,为此两个儿子争论不休。老地主十分苦恼,不知如何是好。这个难题同学们想想办法能解决吗?

  在很久以前,我们的祖先计算平行四边形的面积和计算长方形的面积一样,采取了数方格的方法。老师也为你们准备了一个格子图,你们来数一数它们的面积是多少?

  1、数方格,比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)小组合作,学生用数方格的方法计算两个图形的面积并填写研究报告单。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?

  (学生:麻烦,有局限性。)

  (5)观察表格,你发现了什么?

  出示表格平行四边形底底边上的高面积

  长方形长宽面积

  (6)引导学生交流自己的发现。

  反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:猜想:平行四边形的面积=底高是否适合所有的平行四边形面积呢?

  2、动手操作,验证猜想。

  (1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。

  (2)学生展示,平行四边形变成长方形的方法。(沿着平行四边形的高将平行四边形剪成两个直角梯形,拼成一个长方形。)

  (3)观察并思考:

  ①拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  ②拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (5)交流反馈,引导学生得出结论

  ①形状变了,面积没变。

  ②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (6)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  观察面积公式,要求平行四边形的面积必须知道哪两个条件?

  (平行四边形的底和高)

  (7)请大家想一想,我们是怎样推导出平行四边形的面积公式的?

  (转化图形的形状)

  (8)探究活动小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3、运用公式,解决问题。

  (1)出示例1

  例1、学校1栋楼前停车场,每个车位都是一个平行四边形,它的底是6米,高是4米,一个车位的面积有多少平方米?

  (2)学生独立完成并反馈答案。

  三、看书释疑P79~81

  四、巩固运用

  1、判断,平行四边形面积的概念。

  (1)、两个平行四边形的高相等,它们的面积就相等( )

  (2)、平行四边形的高不变,底越长,它的面积就越大( ) 。

  (3)、一个平行四边形的底是9厘米,高是3分米,它的面积是27平方厘米。

  2、计算,平行四边形的面积。

  3、拓展1,你有几种方法求下面图形的面积?

  4、拓展2 比较,等底等高的平行四边形的面积。

  五、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

平行四边形的面积教案13

  第6单元多边形的面积

  第1课时平行四边形的面积

  【教学内容】:教材P87~88例1及练习十九第1、2、3题。

  【教学目标】:

  知识与技能:掌握平行四边形的面积的计算公式并能解决实际问题。

  过程与方法:通过剪、摆、拼等活动,让学生主动探究平行四边形的面积的计算公式。

  情感、态度与价值观:培养学生初步的空间观念,及积极参与、团结合作、主动探索的精神。

  【教学重、难点】

  重点:掌握平行四边形的面积公式的推导过程和平行四边形的面积的计算。

  难点:理解平行四边形的面积公式的推导过程。

  【教学方法】:迁移式、尝试、扶放式教学法

  【教学准备】:师:多媒体。生:剪刀、直尺、平行四边形纸片、练习本。

  【教学过程】

  一、情境导入

  1.谈话:为了创建文明城市,美化我们的生活环境,某社区准备要修建两个大花坛(出示教材第87页情境图)。这两个花坛分别是什么形状的?(一个长方形,一个平行四边形。)

  2.让学生猜测:你觉得哪一个花坛大一些?多数学生认为不容易猜测,极少数同学猜长方形或平行四边形的花坛大。通过猜测,引导学生总结出:要想比较哪个花坛大,需要计算它们的面积。

  3.提问:你会算它们的面积吗?

  4.揭示课题:今天我们就来学习和研究平行四边形的面积的计算。

  (板书课题:平行四边形的面积)

  二、互动新授

  1.数方格,比较大小。

  想一想,我们可以用什么方法来计算平行四边形的面积呢?

  根据已有经验,学生会想到用数方格的方式得出平行四边形的面积。

  出示教材第87页方格图及平行四边形图。

  引导学生数一数有多少个小方格?每一个小方格是l平方米,不满一格的均按半格计算,问这个平行四边形的面积是多少平方米?

  学生数完以后会得出:这个平行四边形的面积是24m2。

  继续出示教材第87页的长方形图,让学生数一数并算一算长方形的面积是多少。

  学生数完得出:长方形的'长为6m,宽为4m,面积是24m2。

  引导学生完成教材87页的表格,并对填表的结果进行讨论:你发现了什么?

  通过比较、讨论,得出:两个图形的底与长,高与宽和面积分别相等。

  2.猜想验证。

  提问:通过数方格子的方法我们可以求出平行四边形的面积,那如果是一个很大的平行四边形田地还能用数格子的方法吗?(不能,很麻烦)

  引导学生小结并质疑:计算平行四边形的面积用数格子的方法是很不方便的,用什么样的方法计算平行四边形的面积既方便又简单?

  引导假设:是否可以把平行四边形变成一个长方形来计算出它的面积?

  操作验证:演示教材第88页平行四边形面积的推导过程,并让学生拿出自己的学具平行四边形纸片,像刚才演示的操作一样,同桌相互合作,动手进行剪、拼、移的操作方法,从中再次验证一下是否正确。

  师巡回指导学生的操作。

  引导学生思考:通过刚才的操作演示你发现了什么?

  学生可能会回答:我发现把平行四边形的面积转化成长方形后形状变了,但面积没有变,即长方形面积就等于平行四边形面积。我发现长方形的长就是平行四边形的底,宽就是平行四边形的高。

  引导学生利用长方形的面积公式推导出平行四边形的面积公式:

  平行四边形的面积=底×高

  追问:要求平行四边形的面积必须知道什么条件?

  学生得出结论:必须知道平行四边形的底和对应的高。

  3.全班交流,要求学生说出自己的推导过程。(我们把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。)

  4.教学用字母表示。

  如果用S表示平行四边形的面积,a表示平行四边形的底,用h表示平行四边形的高。那么,平行四边形的面积公式可以写成:S=ah(板书)

  5.应用面积计算公式计算平行四边形的面积。

  出示教材第88页例1。

  学生读题,理解题意,并独立完成;教师板书。

  三、巩固拓展

  完成教材第89页“练习十九”第2题。可先让学生试着做,再通过集体订正检查掌握情况。

  四、课堂小结

  师:这节课你学会了什么,有哪些收获?引导总结:把平行四边形转化成长方形可以推导出平行四边形的面积公式:平行四边形的面积=底×高

  五、作业:教材第89页练习十九第1、3题。

  【板书设计】:

  平行四边形的面积

  长方形的面积=长×宽例1 S =ah

  ↓ ↓ ↓ =6×4

  平行四边的面积=底×高=24(m2)

  ↓ ↓ ↓

  S=a × h

平行四边形的面积教案14

  [教学内容]

  人教版《义务教育课程标准实验教科书?数学》五年级上册第79-83页的内容。

  [教学目标]

  1、知识目标

  使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  2、能力目标

  通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;

  3、情感目标

  ①通过自评、互评,引导学生学会欣赏别人,认识自己;

  ②通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。

  [教学重点]

  推导平行四边形的面积公式及运用公式解决各种各样的问题。

  [教学难点]

  运用平行四边形的面积公式解决各种各样的问题。

  [突破重、难点的方法]

  动手操作,细心观察,合作交流。

  [教具准备]

  多媒体课件、木框架、长方形图片、平行四边形图片、剪刀、表格。

  [学具准备]

  长方形图片、平行四边形图片、剪刀。

  [设计思路]

  设置疑问-引发猜想-探究感悟-再探究深化-生成知识-应用和解决问题。

  [教学过程]

  教学过程

  设计思路

  一、以景置疑,引出课题

  1、观察主题图,提出问题

  ①出示第79页的主题图,问:在这美丽的学校或学校的周围,你能看到我们所学过的图形吗?

  ②谁能说说长方形的面积是怎样计算的?正方形呢?

  ③在这美丽的校园里,我最喜欢看的是学校中间的两个花坛,你们知道长方形的花坛大还是平行四边形的花坛大吗?是怎样知道的?(估计学生会说我会算出长方形的面积,而平行四边形的面积看上去跟长方形的面积差不多)

  教师引出今天我们就来学习平行四边形的面积,板书课题。

  以学生熟悉的学校作为情景,让学生倍感亲切地投入到学习中,通过观察让学生重温学过的旧几何图形知识,然后再设置疑问,起到了一种温故而入新的效果。

  1、数方格,比较平行四边形的面积与长方形的面积。

  ①拿出老师预先准备的方格纸图,即第80页平行四边形图和长方形图,然后叫学生用数的方法数出两个图形的面积各是多少。

  ②再认真观察方格纸上的'两个图形,并完成以下的表格。

  ③仔细观察,你能发现什么?

  学生可能会说出平行四边形的面积与长方形的面积是一样的,也有的可能会说出平行四边形的面积应等于它的底×高,对于任何一种发现,教师都要表扬,对于一些有价值的发现更要大力表扬。

  通过猜测,数方格,填表格,仔细观察,不数兑现以学生为主体的教学思想,同时也使学生感悟到平行四边形的面积与长方形的面积有着密切的关系,为再探究平行四边形的面积公式储备了澎湃的动力。

  2、剪图形,进一步探究平行四边形的面积。

  ①出示图形,问谁有方法可以求出它的面积。

  指出:要求这个图形的面积要用剪或拼的方法,那给你这两个图形,你能用类似的方法或其它方法来求它的面积吗?

  ②学生以小组为单位用剪或其它方法共同探究平行四边形的面积的计算方法。

  3、小组汇报探究的过程和结果。

  汇报完后,教师再通过电脑课件把平行四边形转化成长方形的过程演示给学生看,让学生进一步理解平行四边形的面积公式的形成过程。

  4、小结平行四边形的面积。

  平行四边形的底相当于长方形的长,高相当于宽,由此得出:平行四边形的面积=底×高

  5、阅读课本,捕捉新知。

  让学生自己看书本第81页的内容,看完后谈自己还发现了什么?

  通过剪的小组活动,进一步培养学生动手操作能力、观察能力、思维能力。通过合作、观察、思考、交流、概括等活动得出平行四边形的面积公式,这正好符合当前的教学理念,即让学生参与 知识的形成过程,同时也验证了学生之前的猜想。

  通过自主探索,让学生学会从书中获取知识,养成爱看书的好习惯。

  三、练习巩固,知识升华。

  (一)基本练习

  1、平行四边形花坛的底是6m,高是4m,它的面积是多少?

  强调学生在计算平行四边形的面积时应先写出它的字母公式,然后根据公式直接计出它的面积。

  2、完成书本第82页的第1题。

  此题先让学生独立解答,教师只作简单的讲评。

  (二)综合练习

  1、游戏式练习。

  用一个文件袋装着两个没有给出底边、高的长度的平行四边形,叫学生出来抽其中一个,抽到面积大的哪位同学赢。

  学生在确定哪个图形的面积大时,渗透要求平行四边形的面积需要知道平行四边形的底和高分别是多少的知识。

  2、完成第82页的第3题。

  3、选择题。

  (1)如右图,()的面积大。

  A、甲B、乙C、相等

  (2)将一个长方形拉成一个平行四边形后,它的周长(),面积()。

  A、变大B、变小C、不变

  4、完成书本第82页的第4题。

  要求学生说出解题思路。

  分层次、有梯度地进行练习,目的是遵循学生的认知规律,从而更好使学生掌握知识和提升能力。

  四、课堂小结,拓展延伸。

  这节课,你学习了什么,学会了什么?觉得自己的表现怎么样,同学的表现呢?老师呢?

  自评、互评更能让学生认识自己,在评价中更能反思自己的行为或表现,促使共同进步。

平行四边形的面积教案15

  第五册平行四边形、三角形面积公式

  教学过程

  师:小朋友们,今天刘老师带来一个信封,谁来猜猜里面藏着什么?

  生1:卡片。

  生2:奖品。

  ……

  师:同学们的想象力真丰富!我请小朋友上来把它揪出来,但你每拿出一件物品得向小朋友们介绍,你打算用它干什么?

  (学生逐个上台从信封中拿出物品)

  生1:我拿出的是剪刀,打算用它剪东西。(师:板书:剪)

  生2:我拿出的是一格格的东西,打算用它来量。

  师: 我们给它一个名字,透明方格纸,用它量什么呢?

  生2:我想用它量书本。

  师: 书本的 ……(停顿)

  生2:书面有几格?

  师: 书的表面有几格其实就是它的面积,我们用1平方厘米的方格纸数它的面积 。(板书:数)

  生3:我拿出的是平行四边形(学具),我想知道它的许多秘密。

  师: 平形四边形的秘密,这词用得真好!你的写作水平一定高。待会我们来研究它

  这节课我们就用刚才这些学具来研究平行四边形的面积。

  教学反思

  这是一个展示学具的片段。它们都是为学生研究平形四边形、三角形的 面积公式服务的。分别有:剪刀一把、塑料透明方格一张、平行四边形、三角形模型各二张。何必如此耗费时间呢?直接出示学具,学生不也能知道呢?

  不!俗话说:磨刀不误砍柴功。我认为直接出示学具,不能引起学生对学具的重视,对其作用更是模棱两可,将为小组合作学习埋下“隐患”。学生面对一堆学具,面对要完成的任务手足无措,不知该从哪下手。这样岂不是更浪费时间,或者学具将失去它的作用,平形四边形、三角形的面积公式无法推导。

  ……

  教学过程

  师:我们已研究出平行四边形的面积公式,成为了发现者。这可是一项了不起的创举。让我们再接再厉,发现更多的数学奥秘。如果我只给你一把剪刀、一张平行四边形的学具,你还能发现其他图形的面积公式吗?

  (学生动手操作,不久就纷纷举手)

  生1:老师,我把对角一剪就变成了两个三角形。

  生2:老师,我剪出的三角形两个一样的。

  师: 你们真厉害!对角一剪就变成了两个完全一样的三角形,你能从平行四边形的

  面积公式推导出三角形的面积公式吗?

  (学生小组讨论)

  生3:就是除以2。

  师: 你能完整的说一说什么除以2吗?

  生3:平行四边形的面积除以2。用字母表示:S=ab2。

  生4:我能把它剪成两个梯形教后反思

  教材编排中平形四边形、三角形的面积公式推导各安排了二个课时,三角形的面积公式又重新推导一次。而在本堂课上在平行四边形后学生仅用了5分钟就推导并掌握了三角形的'面积公式。花最少的时间掌握一节课的内容,何乐而不为呢?

  现在使用的教材存在着许多的弊端,教师如果只是根据教材按部就班有时就出现事倍功半的现象,而且难以达到预定的效果。而如果教师能运用教材进行灵活的运用,或是根据学生的特点重新组织教材,创设更有效的更能引起学生注意的课题导入设计、问题设计,让学对本节课产生极高的兴趣,让学生自己去发现问题,去解决问题,使教师的教和学生的学达到理想的境界,正如肖川教授所说的“使我们的教学达到完美的教育。”

【平行四边形的面积教案】相关文章:

平行四边形面积的计算教案04-15

面积与面积单位教案05-31

小学数学平行四边形面积的计算教案05-10

《面积》教案04-24

面积的教案11-19

平行四边形面积说课稿11-02

梯形的面积教案04-12

《平行四边形的面积》教学反思04-14

精选面积和面积单位教案3篇08-16