二次根式教案合集5篇
作为一名无私奉献的老师,常常要写一份优秀的教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写呢?下面是小编精心整理的二次根式教案5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
二次根式教案 篇1
【1】二次根式的加减教案
教材分析:
本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:
本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
设计理念:
新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。
教学目标知识与技能目标:
会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。
过程与方法目标:
通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的`过程,发展学生的抽象概括能力。
情感态度与价值观:
通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣.
重点、难点:重点:
合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。
难点:
二次根式加减法的实际应用。
关键问题 :
了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。
教学方法:.
1. 引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。
2. 类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。
3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。
【2】二次根式的加减教案
教学目标:
1.知识目标:二次根式的加减法运算
2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。
3.情感态度:培养学生善于思考,一丝不苟的科学精神。
重难点分析:
重点:能熟练进行二次根式的加减运算。
难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。
教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。
运用教具:小黑板等。
教学过程:
问题与情景 | 师生活动 | 设计目的 |
活动一: 情景引入,导学展示 1.把下列二次根式化为最简二次根式: , ; , , 。上述两组二次根式,有什么特点? 2.现有一块长7.5dm、宽5dm的木板,能否采用如教科书图21.3-所示的方式,在这块木板上截出两个面积分别是8dm 和18dm 的正方形木板? | 这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。 教师倾听学生的交流,指导学生探究。 问:什么样的二次根式能进行加减运算,运算到那一步为止。 由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。 | 加强新旧知识的联系。通过观察,初步认识同类二次根式。 引出二次根式加减法则。 |
3. A、B层同学自主学习15页例1、例2、例3,C层同学至少完成例1、例2的学习。 例1.计算: (1) ; (2) - ; 例2. 计算: 1) 2) 例3.要焊接一个如教科书图21.3—2所示的钢架,大约需要多少米钢材(精确到0.1米)? 活动二:分层练习,合作互助 1.下列计算是否正确?为什么? (1) (2) ; (3) 。 2.计算: (1) ; (2) (3) (4) 3.(见课本16页) 补充: 活动三:分层检测,反馈小结 教材17页习题: A层、 B层:2、3. C层1、2. 小结: 这节课你学到了什么知识?你有什么收获? 作业:课堂练习册第5、6页。 | 自学的同时抽查部分同学在黑板上板书计算过程。抽2名C层同学在黑板上完成例1板书过程,学生在计算时若出现错误,抽2名B层同学订正。抽2名B层同学在黑板上完成例2板书过程,若出现错误,再抽2名A层同学订正。抽1名A层同学在黑板上完成例3板书过程,并做适当的分析讲解。 此题是联系实际的题目,需要学生先列式,再计算。并将结果精确到0.1 m, 学生考虑问题要全面,不能漏掉任何一段钢材。 老师提示: 1)解决问题的方案是否得当;2)考虑的问题是否全面。3)计算是否准确。 A层同学完成16页练习1、2、3;B层同学完成练习1、2,可选做第3题;C层同学尽量完成练习1、2。多数同学完成后,让学生在小组内互相检查,有问题时共同分析矫正或请教老师。也可以抽查部分同学。例如:抽3名C层同学口答练习1;抽4名B层或C层同学在黑板上板书练习第2题;抽1名A层或B层同学在黑板上板书练习第3题后再分析讲解。 点拨:1)对 的化简是否正确;2)当根式中出现小数、分数、字母时,是否能正确处理; 3)运算法则的运用是否正确 先测试,再小组内互批,查找问题。学生反思本节课学到的知识,谈自己的感受。 小结时教师要关注: 1)学生是否抓住本课的重点; 2)对于常见错误的认识。 | 把学习目标由高到低分为A、B、C三个层次,教学中做到分层要求。 学生学习经历由浅到深的过程,可以提高学生能力,同时有利于激发学生的探索知识的欲望。 将二次根式的'加减运算融入实际问题中去,提高了学生的学习兴趣和对数学知识的应用意识和能力。 小组成员互相检查学生对于新的知识掌握的情况,巩固学生刚掌握的知识能力。达到共同把关、合作互助的目的。 培养学生的计算的准确性,以培养学生科学的精神。 对课堂的问题及时反馈,使学生熟练掌握新知识。 每个学生对于知识的理解程度不同,学生回答时教师要多鼓励学生。 |
二次根式教案 篇2
目 标
1. 熟练地运用二次根式的性质化简二次根式;
2. 会运用二次根式解决简单的实际问题;
3. 进一步体验二次根式及其运算的实际意义和应用价值。
教学设想
本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。
教 学 程序 与 策 略
一、预习检测:
1.解决节前问题:
如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?
归纳:
在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。
二、合作交流:
1、:如图,扶梯AB的坡比(BE与AE的'长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)
让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?
注意解题格式
教 学 程 序 与 策 略
三、巩固练习:
完成课本P17、1,组长检查反馈;
四、拓展提高:
1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。
师生共同分析解题思路,请学生写出解题过程。
五、课堂小结:
1.谈一谈:本节课你有什么收获?
2.运用二次根式解决简单的实际问题时应注意的的问题
六、堂堂清
1: 作业本(2)
2:课本P17页:第4、5题选做。
二次根式教案 篇3
一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.
本节课的教学难点为:二次根式性质的灵活运用.
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.
问题2 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0).
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.
例2 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质1,学会灵活运用.
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.
问题5 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的.性质2,培养学生抽象概括的能力.
例3 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
【设计意图】巩固二次根式的性质2,学会灵活运用.
3.归纳代数式的概念
问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念.
【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.
4.综合运用
(1)算一算:
【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.
(3)谈一谈你对 与 的认识.
【设计意图】加深学生对二次根式性质的理解.
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题.
五、目标检测设计
1. ; ; .
【设计意图】考查对二次根式性质的理解.
2.下列运算正确的是( )
A. B. C. D.
【设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若 ,则 的取值范围是 .
【设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算: .
【设计意图】考查二次根式性质的灵活运用.
二次根式教案 篇4
教学目的:
1、在二次根式的混合运算中,使学生掌握应用有理化分母的方法化简和计算二次根式;
2、会求二次根式的代数的值;
3、进一步提高学生的综合运算能力。
教学重点:在二次根式的混合运算中,灵活选择有理化分母的方法化简二次根式
教学难点:正确进行二次根式的混合运算和求含有二次根式的代数式的值
教学过程:
一、二次根式的混合运算
例1 计算:
分析:(1)题是二次根式的加减运算,可先把前三个二次根式化最简二次根式,把第四式的分母有理化,然后再进行二次根式的加减运算。
(2)题是含乘方、加、减和除法的混合运算,应按运算的顺序进行计算,先算括号内的式子,最后进行除法运算。注意的计算。
练习1:P206 / 8--① P207 / 1①②
例2 计算
问:计算思路是什么?
答:先把第一人的括号内的式子通分,把第二个括号内的式子的分母有理化,再进行计算。
二、求代数式的值。 注意两点:
(1)如果已知条件为含二次根式的式子,先把它化简;
(2)如果代数式是含二次根式的式子,应先把代数式化简,再求值。
例3 已知,求的值。
分析:多项式可转化为用与表示的式子,因此可根据已知条件中的及的值。求得与的值。在计算中,先把及的式了有理化分母。可使计算简便。
例4 已知,求的值。
观察代数式的特点,请说出求这个代数式的值的思路。
答:所求的代数式中,相减的两个式子的.分母都含有二次根式,为化去它们的分母中的根号,可以分别先把各自的分母有理化或进行]通分,把这个代数式化简后,再求值。
三、小结
1、对于二次根式的混合混合运算。应根据二次根式的加、减、乘除和乘方运算的顺序进行,即先进行乘方运算,再进行乘、除运算,最后进行加、减运算。如果有括号,先进行括号内的式子的运算,运算结果要化为最简二次根式。
2、在代数式求值问题中,如果已知条件所求式子中有含二次根式(或分式)的式子,应先把它们化简,然后再求值。
3、在进行二次根式的混合运算时,要根据题目特点,灵活选择解题方法,目的在于使计算更简捷。
四、作业
P206 / 7 P206 / 8---②③
二次根式教案 篇5
【 学习目标 】
1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。
2、过程与方法:进一步体会分类讨论的数学思想。
3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。
【 学习重难点 】
1、重点:准确理解二次根式的概念,并能进行简单的计算。
2、难点:准确理解二次根式的双重非负性。
【 学习内容 】课本第2— 3页
【 学习流程 】
一、 课前准备(预习学案见附件1)
学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。
二、 课堂教学
(一)合作学习阶段。
教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。
(二)集体讲授阶段。(15分钟左右)
1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。
2. 教师对合作学习中存在的.普遍的不能解决的问题进行集体讲解。
3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。
(三)当堂检测阶段
为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、 课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念 例题 例题
二次根式性质
反思:
【二次根式教案】相关文章:
二次根式教案汇编9篇04-08
二次根式教案集锦九篇04-26
二次根式教案范文汇总9篇10-27
八年级二次根式的乘除说课稿06-17
高一数学根式的教案02-07
《一元二次方程》教案及反思07-24
大班创编故事《龟兔第二次赛跑》教案08-27
一元二次方程高中教案11-15
二次函数教学反思04-22