六年级下册数学教案(15篇)
作为一名无私奉献的老师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。来参考自己需要的教案吧!以下是小编为大家整理的六年级下册数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
六年级下册数学教案1
教学目标
1。在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。
2。初步学会用负数表示一些日常生活中的实际问题。
3。能借助数轴初步理解正数、0和负数之间的关系。
重点难点
负数的意义和数轴的意义及画法。
教学指导
1。通过丰富多彩的生活情境,加深学生对负数的认识。
负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。
2。把握好教学要求。
对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。
3。培养学生多角度观察问题,解决问题的能力。
教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。
课时安排
共分3课时
教学内容
负数的初步认识
(1)(教材第2页例1)。
教学目标
结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。
重点难点体会负数的重要性。
教学准备多媒体课件。
情景导入
1。教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)
2。引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么0℃代表什么意思—3℃和3℃各代表什么意思)
3。引出课题并板书:负数的初步认识
(1) 新课讲授教学教材第2页例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思。0℃表示淡水开始结冰的`温度。比0℃低的温度叫零下温度,通常在数字前加“—”(负号):如—3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
(3)我们来看一下课本上的图,你知道北京的气温吗最高气温和最低气温都是多少呢随机点同学回答。
(4)刚刚同学回答得很对,读法也很正确。
(5)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢用手势告诉大家好吗
学生讨论合作,交流反馈。
(6)请同学们把图上其它各地的温度都写出来,并读一读。
(7)教师展示学生不同的表示方法。
(8)小结:通过刚才的学习,我们用“+”和“—”就能准确地表示零上温度和零下温度。
课堂作业
完成教材第4页的“做一做”第1题。组织学生独立完成,指名回答。
答案:—18℃温度低。
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
六年级下册数学教案2
教学内容
(1)负数的初步认识
(2)(教材第3页例2)。
教学目标
通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。
重点难点
体会引入负数的必要性,初步理解负数的含义。
情景导入
教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的组织学生讨论回忆上一课内容。
师:很好,大家都很棒。今天我们继续学习负数知识。引出课题并板书:负数的初步认识(2)
新课讲授
1。教学例2。
(1)教师出示存折明细示意图。(教材第3页的主题图)教师:同学们能说说“支出(—)或(+)”这一栏的数各表示什么意义吗组织学生分组讨论、交流,然后指名汇报。
(2)引导学生归纳总结:像20xx,500这样的数表示的是存入的钱数;而前面有“—”号的数,像—500,—132这样的数表示的是支出的钱数。
(3)教师:上述数据中500和—500意义相同吗(500和—500意义相反,一个是存入,一个是支出)。你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗说说你是怎么表示的师把学生的表示结果一一板书在黑板上。
2。归纳正数和负数。
(1)你能把黑板上板书的这些数进行分类吗小组讨论交流。
(2)教师展示分类的结果,适时讲解。像+8,+4,+20xx,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。像—8,—4,—500,—20这样的数,我
们把它叫做负数。
(3)那么0应该归为哪一类呢组织学生讨论,相互发表意见。师设难:“我认为0应该归为正数一类。”
归纳:0既不是正数也不是负数,它是正数和负数的分界点。
(4)你在什么地方见过负数教师鼓励学生注意联系实际举出更多的例子。
课堂作业
完成教材第4页的“做一做”第2题。组织学生动手填一填,在小组中交流检查。答案:
4 +41 51负数有:—7?
3正数有:+
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
第2课时负数的初步认识
(2)正数:+8负数:—8
+4 —4 +20xx —20xx +500 —500 +100 —100 +20 —20
0既不是正数也不是负数。
第3课时在数轴上表示正数、0和负数
教学内容
借助数轴理解正数和负数的意义(教材第5页例3)。
教学目标
1。借助数轴初步理解正数、0、负数。
2。初步体会数轴上数的顺序,完成对数的结构的初步构建以及正数与负数的比较。
重点难点
认识数轴、0。
情景导入
教师用CAI课件演示教材第5页的主题图。
教师:如何在一条直线上表示出他们运动后的情况呢
新课讲授教学例3。
(1)教师:怎样用数来表示这些学生和大树的相对位置关系呢组织学生在小组中议一议,然后汇报。
(2)教师结合学生的汇报,用课件出示数轴,在相应点的下方标出对应的数。
(3)让学生说出直线上其他几个点代表的数,让学生对数轴上的点表示的.正负数形成相对完整的认识。
(4)教师总结:我们可以在直线上表示出正数、0、负数,像这样的直线我们叫做数轴。
(5)引导学生观察数轴:
①从0起往右依次是从0起往左依次是你发现什么规律
②在数轴上分别找到
和对应的点。如果从起点分别到和处,应如何运动
师及时小结,数轴除了可以表示整数,还可以表示小数、分数。每个数都能在数轴上找到它们相对应的点。
课堂作业
1。完成教材第5页的“做一做”。学生独立练习,指名汇报。
2。完成教材第6页练习一的第4题。第4题组织学生独立完成,并在小组中相互交流、检查。教师用课件出示答案、订正。
答案:
1。略
2。第4题:点A表示的数是—7;点B表示的数是—4;点C表示的数是—1;点D表示的数是3;点E表示的数是6。
课堂小结
通过这节课的学习,你有什么收获
课后作业
完成练习册中本课时的练习。
第3课时在数轴上表示正数、0和负数
上面这样的直线叫做数轴。
六年级下册数学教案3
学习目标:
1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的.图形。
2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。
学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。
学习难点:在方格纸上画出线段旋转90度后的图形
课前准备:钟表,课件,教具
学习过程
环节学案
回顾旧知
1、物体的运动有( )和( )。
2、平移和旋转都只改变图形的( ),不改变图形的( )和( )。
自主探索
1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。
2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。
3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。
4、旋转三要素指( )( )( )。
合作探究
当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。
达标检测
基础性作业:
课本29页练一练1、2题(看课件)。
一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。
提高性作业:
1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。
拓展性作业:
如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N
六年级下册数学教案4
教学目标
1. 在具体情境中,通过画一画的活动,初步认识正比例图像。
2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的
变量的值。
3.利用正比例关系,解决生活中的一些简单问题。
教学重点
1.在具体情境中,通过画一画的活动,初步认识正比例图象。
2.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
教学难点
1.会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
2.利用正比例关系,解决生活中的一些简单问题。
教学过程
一、复习
活动一:判断下面的量是否成正比例关系?
1.每行人数一定,总人数和行数。
2.长方形的长一定,宽和面积。
3.长方体的底面积一定,体积和高。
4.分子一定,分母和分数值。
5.长方形的周长一定,长和宽。
6.一个自然数和它的倒数。
7.正方形的边长与周长。
8.正方形的边长与面积。
9.圆的半径与周长。
10.圆的面积与半径。
11.什么样的两个量叫做成正比例的'量?
二、新授
活动二:探索一个数与它的5倍之间的关系。
1.求出一个数的5倍,填写书上表格。自己独立完成。
2.判断一个数的5倍和这个数有怎样的关系?说说你判断的理由。
(一个数和它的5倍之间具有正比例关系。)
3.根据上表,说出下图中各点的含义。(图见书上P22)。请观察横轴表示什么?纵轴表示什么?然后说说各点表示的含义。
4. 连接各点,你发现了什么?
(所描的点都在同一条直线上。)
5.利用书上的图,把下表填完整。
6.估计并找一找这组数据在统计图上的位置。
自己独立完成。
7.在统计图上估计一下,看看自己估计的是否准确。
三、练习
活动三:试一试。
1. 在下图中描点(图见课本P22),表示第20页两个表格中的数量关系。
2. 思考:连接各点,你发现了什么?
活动四:练一练。
1. 圆的半径和面积成正比例关系吗?为什么?
教师讲解:因为圆的面积和半径的比值不是一个常数。
2. 乘船的人数与所付船费为:(数据见书上)
(1)将书上的图补充完整。
(2)说说哪个量没有变?(每人所需的乘船费用没有变化。)
(3)乘船人数与船费有什么关系?(乘船费用与人数成正比例。)
(4)连接各点,你发现了什么?(所有的点都在一条直线上。)
3. 回答下列问题:
(1)圆的周长与直径成正比例吗?为什么?
(圆的周长与直径成正比例关系。)
(2)根据右图,先估计圆的周长,再实际计算。
① 直径为5厘米的圆的周长估计值为( ),实际计算值为( )。
② 直径为15厘米的圆的周长估计值为(),实际计算值为( )。
4.把下表填写完整。试着在上页第(1)题的图中描点表示上表中的数量关系,并连接各点,你发现了什么?(表格见书上)
(所有的点都在同一条直线上。)
四、课堂小结
同学们,这节课我们再次巩固练习了正比例的相关知识。大家有什么收获?
六年级下册数学教案5
单元目标:
1、使同学认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
使同学理解求圆柱的侧面积和外表积的计算方法,并会正确计算。
使同学理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
单元重点:
掌握圆柱的外表积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导 1、圆柱
(1)圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各局部的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养同学细致的观察能力和一定的空间想像能力。
3、激发同学学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名同学回答,使同学熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名同学回答,其他同学评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、平安、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的外表
(1)摸摸圆柱。请同学摸摸自身手中圆柱的外表,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的.曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导同学考虑:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,丈量哪一条最为简便?
老师引导同学操作分析,得出丈量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤ 斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②同学再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化生长方形长和宽的过程。)
③同学交流后说出自身的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高和正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化生长方形?
课件显示:平行四边形通过割补转变生长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不论侧面怎样剪,得到各种图形,都能通过割补的方法转化生长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的同学和时辅导。
3.做第15页练习二的第4题。
四、安排作业
完成一课三练P15的1、2题。
板书:
┌长方形
沿高剪┤ 斜着剪:平行四边形
└正方形
圆柱的底面周长 → 长方形的长
圆柱的高 → 长方形的宽
六年级下册数学教案6
教学内容:
教材第4页的例2和“试一试”、“练一练”,练习二第1-4题。
教学目标:
1.使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。
2.培养解决简单实际问题的能力,体会生活中处处有数学。
3.进一步体会知识间的内在联系,感受数学知识和方法的应用价值,获得一些成功的体验,增强学好数学的信心。
教学重点:
掌握百分数在实际生活中的应用。
教学难点:
正确、熟练地运用百分数的知识进行纳税的计算。
预习题:弄清什么是纳税?怎样纳税?纳税的意义是什么?(课前布置学生上网查询相关信息)
教学准备:
教师准备有关纳税的一些资料;教学光盘及多媒体设备
教学过程:
一、认识、了解纳税
纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。
税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。我国的税收逐年增长,到20xx年,全年税收收入已达到30866亿元。(进行纳税意识教育)
提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。板书:纳税
二、教学新课
1.教学例2.
出示例2:星光书店去年十二月份的营业额约为50万元。如果按营业额的 6%缴纳营业税,这个书店去年十二月份应缴纳营业税约多少万元?学生读题。
提问:想一想,题里的营业额的6%缴纳营业税,实际上就是求什么?怎样列式计算?你们会做吗?试试看!
学生尝试练习,集体订正,教师板书算式。
强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额。
2.我们怎样计算呢?
方法1:引导学生将百分数化成分数来计算。
方法2:引导学生将百分数化成小数来计算。
3.做“试一试”
提问:这道题先求什么?再求什么?
生:先求5200元的10%是多少?再加上5200元就是买摩托车共付的钱。
学生板演与齐练同时进行,集体订正。
4.学生在课本上完成练一练。
三、同步练习
1.练习二的第1、2题。
指名学生读题,让学生说明算式里的每个数据的意思。
学生独立思考后练习,交流时请学生说说解题思路,教师及时了解学生解答情况。
2.练习二第3题。
学生读题后,教师简单介绍个人所得税的知识。
学生独立思考并列算式计算,然后交流。
四、拓展提高
1.练习二的第4题。
我国20xx年10月公布的个人所得税征收标准:个人收入1600元以下不征税。月收入超过1600元,超过部分按下面的标准征税。
不超过500元的 5%
超过500元~20xx元的 10%
超过20xx元~5000元的 15%
------
李明的妈妈月收入1800元,爸爸月收入2500元,他们各应缴纳个人所得税多少元?
在这道题中,李明的妈妈应纳税的收入是1800元吗?为什么?全班展开讨论李明妈妈的纳税的收入应为多少元?税率是多少?那么爸爸的收入是2500元,应纳税额为多少?他的税率又是多少呢?
介绍分段纳税,最后让学生分别求出李明的'爸爸妈妈各应缴纳的个人所得税。
将三段不同的收税看作三个档次,先用总收入减去1600,看超过的部分是属于哪个档次,如果超过的部分少于500,属第一档次,用超出的部分乘以5%;如果超过的部分大于500小于20xx就属第二档次,第一档次的税肯定要交,用500乘5%,再用(超出部分-500)乘10%,然后相加;如果超过的部分大于20xx小于5000就属第三档次,第一、二档次的税肯定要交,用500乘5%,1500乘10%,(超出部分-20xx)乘15%,再相加。
关键是这里第一、二档次的,要全额交税。
五、课堂回顾
提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!
六、布置作业
课内作业:补充习题
板书设计:
纳税问题
营业额×5%=营业税
60×5%=3(万元)
答:应缴纳营业税3万元。
爸爸月收入2500元,应分两段来纳税:
2500-1600=900元
500×5%=25元
(900-500)×10%=40元
25+40=65元
答:爸爸应缴纳个人所得税65元
六年级下册数学教案7
教学内容:
人教版小学数学教材六年级下册第96~97页例1及相关练习。
教学目标:
1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。
2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。
教学重点:
看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。
教学难点:
根据统计图进行简单的数据分析。
教学准备:
课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。
教学过程:
一、创设情境,谈话激趣
1.出示教材第96页情境图,说说同学们正在干什么?
2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用Excel自动生成扇形统计图)
喜欢的项目
乒乓球
足球
跳绳
踢毽
其他
人数
【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。
二、整理数据,引入新课
1.通过这张统计表,我们可以得到什么信息?
预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的'多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。
2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?
3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?
4.学生进行口算或笔算,完成统计表,并进行校对。
六年级下册数学教案8
教学内容:
人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
教学目标:
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
教学重、难点:
负数的意义。
教学设备:
班班通
教学过程:
一、谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
二、教学新知
1.表示相反意义的量。
(1)引入实例。
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。
①六年级上学期转来6人,本学期转走6人。
②张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③与标准体重比,小明重了2.5千克,小华轻了1.8千克。
④一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试。
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流。
……
2.认识正、负数。
(1)引入正、负数。
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。
哈尔滨:-15 ℃~-3 ℃
北京:-5 ℃~5 ℃
深圳:12 ℃~23 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。)
5.练一练。
读一读,填一填。(练习一第1题。)
6.出示课题。
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):
“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的`意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。
逐一出示:
1.表示海拔高度。(“做一做”第2题。)
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。(练习一第2题。)
月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?
4.表示时间。(练习一第3题。)
5.“净含量:10±0.1g”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
六年级下册数学教案9
教学内容:
课本第78——79页例2和“练一练”,练习十三第1、2题。
教学目标:
1、让学生用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用的意识。
2、发展思维、提高分析问题、解决问题的能力,进一步体会数学知识之间的内在联系。
教学重难点:
用分数乘法和减法解决一些稍复杂的实际问题。
课前准备:
课件
教学过程:
一、谈话导入
谈话,并出示例题。
学生自由读题,了解题意。
二、探索新知
1、出示例2,问:从题中你知道了什么?要我们解决什么问题?
说出题目的已知条件和所求问题。
谈话:为了使已知条件之间、条件和问题之间的关系更清楚,可以先画线段图。
教师一边讲解一边示范画线段图的'过程,学生和教师一起操作,完善线段图。
2、问:要求女运动员有多少人,可以先算什么?在图上指出来。
各自列式解答,指名板演,期于学生同时列式解答。
集体评讲。
探讨其他算法
设问:想一想还可以怎样算?
学生思考后交流。教师适当评讲。
三、巩固深化
1、完成“练一练”第1题。
让学生先说出自己的想法,然后再列式解答。
集体评讲。
2、完成“练一练”第2、3题。
学生弄清题意后独立解答。(要求学生画出线段图)
集体评讲。
四、课堂总结
通过今天的学习,你有什么收获呢?
五.布置作业
练习十三第1、2题。
教学反思:
六年级下册数学教案10
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。
(二)核心能力
在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。
(三)学习目标
1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。
2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。
(四)学习重点
引导学生把具体问题转化为“抽屉原理”。
(五)学习难点
找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。
(六)配套资源
实施资源:《鸽巢原理》名师教学课件
二、学习设计
(一)课堂设计
1、情境导入
师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。
师:神奇吧!你们想不想表演一个呢?
师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?
在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)
2、探究新知
(1)学习例3
①猜想
出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?
预设:2个、3个、5个…
②验证
师:我们的猜想是不是正确呢?我们可以用画一画、写一写的`方法来说明理由,并把验证的过程进行整理。
可以用表格进行整理,课件出示空白表格:
学生独立思考填表,小组交流。
全班汇报。
汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。
课件汇总,思考:从这里你能发现什么?
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。
③小结
师:为什么球的个数一定要比抽屉数多?而且是多1呢?
预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。
师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。
板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。
(2)引导学生把具体问题转化成“抽屉原理”。
师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?
思考:①摸球问题与“抽屉原理”有怎样的联系?
②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?
学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。
结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。
3、巩固练习
(1)完成教材第70页“做一做”第1题。
(2)完成教材第70页“做一做”第2题。
4、课堂总结
师:这节课你学到了什么知识?谈谈你的收获和体验。
(三)课时作业
1、有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?
答案:5只。
解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】
2、一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?
答案:16条。
解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】
六年级下册数学教案11
教材分析:
本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。
学生分析:
在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。
学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。
教学目标:
1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的'方法。
2、通过活动培养学生利用小组合作,探究解决问题的能力。
3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。
教学重点:
运用圆的有关知识计算。
教学难点:
结合具体问题,让学生独立思考,提高解决简单问题的能力。
关键:体会数学知识在体育中的应用。
教学过程:
一、汇报调查,引入课题(8分钟)
1、汇报调查情况
课前,我让大家调查运动场的情况,你们得到了哪些信息?
2、课件显示如下情境图:
师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。
师:在一些短跑比赛中,运动员所在的起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。
3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。
二、结合实例、探究问题(24分钟)
实例一:
课件显示:
淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?
(1)笑笑所走路线的半径为10米,她走过的路程是()米。
(2)淘气所走的路线半径为()米,他走过的路程为()米。
(3)两人走过的路相差()米。
1、理解题意
根据这幅情境图,你能获得哪些信息?指名回答。
2、小组讨论
先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。
3、全班交流
抽生汇报,教师板书。
实例2:
课件显示:(一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)
1、观察跑道由哪几部分组成?
2、在跑道上跑一圈的长度可以看成是哪几部分的和?
(板书:跑道一圈长度=圆周长+2个直道长度)
(二)简化研究问题:
1、85.96米是指哪部分的长度?一条直道吗?
2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)
(三)寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么?
2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
(四)、动手解决问题:
1、计算圆的周长要知道什么?(直径)
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。
引导学生将3.14159换成进行计算
汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。
4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米
师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。
三、巩固练习、实践应用(3分钟)
400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?
四、拓展延伸、自我评价(5分钟)
1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?
2、课后自学课本第45页你知道吗?
五、全课小结:
谈一谈,这节课你有什么收获?
六、布置作业
六年级下册数学教案12
教学内容:
课本第99页例9和“练一练”,练习十六第7-10题。
教学目标:
懂得商业打折扣应用题的数量关系与“求一个数的百分之几是多少”的应用题相同,并能正确地解答这类应用题。
教学重点:
按折扣进行计算。
教学难点:
对折扣的理解,并正确列出算式。
课前准备:
课件
教学过程:
一、创设情境,引入新课
春节假期是人们旅游和购物的好时机,许多商家都看准这一机会,搞了许多促销活动。课前我让同学们去了解一些商家的促销手段,有谁来向大家介绍一下你了解到的信息。
刚才很多同学都说出了一个新的词:打“折”。同学们所说的“打八折、打五折、打七六折、买一赠一、买四赠一”等都是商家的一种促销手段——打“折”。
二、实践感知,探究新知
1、提问:看到“打折”两个字,你会想到什么?
学生全班交流。
小结:工厂和商店有时要把商品减价,按原价的百分之几出售。这种减价出售通常叫做打“折”出售。
出示:华联超市的毛衣打“六折”出售。
提问:这句话是什么意思?那如果打“五折”是什么意思?打“八折”呢?
小结:“几折”就是十分之几,也就是百分之几十。
提问:一件衬衫打“八五折”出售是什么意思?打“七六折”呢?
质疑:刚才很多同学课前了解到的的信息中都有打“折”一词,现在请你说说你了解到的信息是什么意思?
学生交流课前搜集到的有关打折信息的意思。
提问:说一说下面每种商品打几折出售。
①一辆汽车按原价的90%出售。
②一座楼房按原价的96%出售。
③一只旧手表按新手表价格的80%出售。
2、教学例9。
学生自己读题。
出示例9的场景图。让学生说说从图中获取到哪些信息。
提问:你知道“所有图书一律打八折销售”是什么意思吗?
提问“现价是原价的80%”这个条件中的.80%是哪两个数量比较的结果?比较时要以哪个数量作单位1?这本书的原价知道吗?你打算怎样解答这个问题?
学生独立尝试。
全班交流算式和思考过程
解:设《趣味数学》的原价是ⅹ元。
ⅹ×80%=12
ⅹ=12÷0.8
ⅹ=15
答:《趣味数学》的原价是15元。
3、引导检验,沟通联系。
启发:算出的结果是不是正确?你会不会对这个结果进行检验?
先让学生独立进行检验,再交流交验方法。
启发学生用不同的方法进行检验:可以求实际售价是原价的百分之几,看结果是不是80%;也可以用原价15元乘80%,看结果是不是12元。
4、指导完成“练一练”。
先让学生说说《成语故事》的现价与原价有什么关系,知道了现价怎样求原价。再让学生根据例题中小洪的话列方程解答。学生解答后交流:你是怎样想到列方程解答的?列方程时依据了怎样的相等关系?你又是怎样检验的?
三、巩固练习
1、做练习十六第7题。
指名口答。
2、做练习十六第8题。
让学生独立解答,再对学生解答的情况适当加以点评。
四、课堂总结
提问:回忆一下,打折是什么意思?一件商品的现价、原价与折扣之间有什么关系?
五、布置作业
练习十六第9、10题。
六年级下册数学教案13
教学目标知识目标:
理解比例的意义,认识比例各部分的名称。
能力目标:
能运用比例的意义判断两个比能否组成比例,并会组比例。
情感目标:
感受数学的奥秘,培养数学兴趣。
教学重、难点教学
重点:理解比例的意义。
教学难点:能根据比例的意义写比例.
突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。
教学媒体多媒体课件、小黑板
教学活动及主要语言预设学生活动预设
一、创境激疑
上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。
回顾
产生疑问
二、互动解疑
1、比例的意义
在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。
(1)写出每个图片的长与宽的'比
(2)求出各比的比值
(3)观察特点,写出规律
板书:
图片A:6:4=3:2=1.5
图片B:3:2=1.5
图片C:8:3=2.66……
图片D:12:8=3:2=1.5
图片E:12:2=6
比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。
结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。
巩固练习:
(1)要求每个学生写出一个比例,教师巡视指导且批阅。
(2)要求每个学生写出一个比例,同桌交流。
(3)做一做教材表格的题,完成后由教师批改。
2、认识比例各部分名称
组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。
在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:12:6=8:4中12和4是比例6和8是比例
观察
先独立思考
指名汇报
共同发现、小结
理解
自主思考
小组内交流探究
汇报交流
独立填写
同桌交流
指名汇报
三、启思导疑
1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)
2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)
指名谈发现
理解
识记
四、实践运用
(一)填一填。
1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。
2、用6,3,9,8组成一个比例是( )。
(二)下列那几组的两个比可以组成比例?为什么?
(1)4:5和8:20
(2)15:30和18:36
(3)0.7:4.9和140:20
(4)1/3:1/9和1/6:1/8
(三)按要求写一写。
1、先写出比值是3的两个比,再组成比例。
2、根据1.2×25=0.6×25写出两个比例式。
独立思考
指名汇报
评价订正
五、总结评价
这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?
自由小结
板书设计:比例的认识
12:6 = 8:4
6:4 = 3:2
六年级下册数学教案14
第一课时
教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、 新授
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、 初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、 交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的'长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、 举例说明进一步明确特征
六年级下册数学教案15
第一单元负数
第一课时负数
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①、我在银行存入了500元(取出了500元)。
②、知识竞赛中,五(1)班得了20分(扣了20分)。
③、10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。
3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。
了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①、上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②、北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)、交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐
鲁番盆地的海拔可以记作:-155米。(板书)
(2)、小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的.高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①、如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②、如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表
示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)、存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)、电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我
们都可以用正数和负数来表示。
七、布置作业
《冠魔新干线》第1页的练习。
第二课时负数
教学内容:比较正数和负数的大小。
教学目的:
知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?15-85.6+0.9-+0-82832、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是____摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)、提问你能在一条直线上表示他们运动后的情况吗?
(2)、让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)、教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)、学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)、总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)、引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5
处,应如何运动?
(7)、练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)、在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)、负数比0小,正数比0大,负数比正数小。
五、布置作业
《冠魔新干线》第2页的练习。
第三课时
内容:认识负数练习
1、先读一读下面这些温度,在写下来。
汽油蒸发的温度是四十摄氏度。()
汽油凝固的温度是十八摄氏度。()
金星表面的最高温度是四百六十五摄氏度。()
2、先读一读,再把这些数放入相应的框内。
正数:()
负数:()
【六年级下册数学教案】相关文章:
六年级下册数学教案02-28
六年级下册数学教案06-25
六年级下册数学教案15篇02-28
人教版下册数学教案07-19
六年级下册数学教案通用15篇03-31
北师大版六年级下册《反比例》数学教案06-04
人教版下册数学教案(锦集4篇)09-18
五年级下册数学教案10-19
四年级下册数学教案04-20