高二物理知识点总结

时间:2025-10-10 10:18:56 知识点总结 我要投稿

高二物理知识点总结

  总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以使我们更有效率,不如我们来制定一份总结吧。你想知道总结怎么写吗?下面是小编帮大家整理的高二物理知识点总结,欢迎大家分享。

高二物理知识点总结

高二物理知识点总结1

  知识点(一)

  1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。

  2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。

  3、利用静电放电产生的臭氧、无菌消毒等

  雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。

  4、防止静电的主要途径:

  (1)避免产生静电。如在可能情况下选用不容易产生静电的材料。

  (2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。

  知识点(二)

  1、动量:可以从两个侧面对动量进行定义或解释:

  ①物体的质量跟其速度的乘积,叫做物体的动量。

  ②动量是物体机械运动的一种量度。

  动量的表达式P=mv。单位是。动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。

  2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

  运用动量守恒定律要注意以下几个问题:

  ①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

  ②对于某些特定的问题, 例如碰撞、等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

  ③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的.,一般取地面为参照物。

  ④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

  ⑤动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

  ⑥动量守恒定律有广泛的应用范围。只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

  知识点(三)

  动量与动能的比较:

  ①动量是矢量, 动能是标量。

  ②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

  比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。

  动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。

  ●碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。

  以物体间碰撞形式区分,可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

  以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。

  各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。

高二物理知识点总结2

  化学反应条件的优化——工业合成氨

  1、合成氨反应的限度

  合成氨反应是一个放热反应,同时也是气体物质的量减小的熵减反应,故着落温度、增大压强将有利于化学安稳向生成氨的方向移动。

  2、合成氨反应的速率

  (1)高压既有利于安稳向生成氨的方向移动,又使反应速率加快,但高压对设备的要求也高,故压强不能特别大。

  (2)反应进程中将氨从混合气中分离出去,能保持较高的反应速率。

  (3)温度越高,反应速率进行得越快,但温度过高,安稳向氨分解的方向移动,不利于氨的合成。

  (4)加入催化剂能大幅度加快反应速率。

  3、合成氨的适宜条件

  在合成氨生产中,到达高转化率与高反应速率所需要的条件有时是矛盾的,故应当寻觅以较高反应速率并获得适当安稳转化率的反应条件:一样用铁做催化剂,控制反应温度在700K左右,压强范畴大致在1×107Pa~1×108Pa之间,并采取N2与H2分压为1∶2.8的投料比。

  1、中和热概念:在稀溶液中,酸跟碱产生中和反应而生成1molH2O,这时的反应热叫中和热。

  2、强酸与强碱的中和反应其实质是H+和OH—反应,其热化学方程式为:H+(aq)+OH—(aq)=H2O(l)ΔH=—57.3kJ/mol

  3、弱酸或弱碱电离要吸取热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。

  4、盖斯定律内容:化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关,如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成的`反应热是相同的。

  5、燃烧热概念:25℃,101kPa时,1mol纯物质完全燃烧生成稳固的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。

  注意以下几点:

  ①研究条件:101kPa

  ②反应程度:完全燃烧,产物是稳固的氧化物。

  ③燃烧物的物质的量:1mol

  ④研究内容:放出的热量。(ΔH<0,单位kJ/mol)

高二物理知识点总结3

  三种产生电荷的方式:

  1、摩擦起电:

  (1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

  (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

  (3)实质:电子从一物体转移到另一物体;

  2、接触起电:

  (1)实质:电荷从一物体移到另一物体;

  (2)两个完全相同的物体相互接触后电荷平分;

  (3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;

  (1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

  (2)实质:使导体的电荷从一部分移到另一部分;

  (3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的'基本性质:能吸引轻小物体;

  (1)电荷间相互作用规律:自然界中只有两种电荷,即正电荷和负电荷、同种电荷相互排斥、异种电荷相互吸引。

  (2)三种起电方法:

  ①摩擦起电:当两个物体相互摩擦时,一些束缚得不紧的电子从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带负电,失去电子的物体则带正电。

  ②感应起电:利用静电感应使金属导体带电的过程

  ③接触起电:一个物体带电时,电荷之间会相互排斥,如果接触另一个导体,电荷会转移到这个导体上,使物体带电。

  (3)电荷守恒定律:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分:在转移过程中,电荷的总量保持不变。

  (4)元电荷:最小电荷量就是电子所带的电荷量,这个最小的电荷量叫做元电荷。

高二物理知识点总结4

  【带点粒子在磁场中的运动】

  1、几种运动情况:①、B⊥L时,f洛。f洛=qvB(f、B、v三者方向两两垂直且力f方向时刻与速度v垂直)?导致粒子做匀速圆周运动。

  ②、B||v时,f洛=0?做匀速直线运动。

  ③、B与v成夹角时,(带电粒子沿一般方向射入磁场),可把v分解为(垂直B分量v⊥,此方向匀速圆周运动;平行B分量v||,此方向匀速直线运动。)?合运动为等距螺旋线运动。

  2、带电粒子在磁场中圆周运动(关健是画出运动轨迹图,画图应规范)。

  v22?mv?m()2R?R?⑴规律:qvB?m(计算时写原始式子)周期:RTqBT?2?R2?m?vqB

  ⑵找圆心:①(圆心的确定)因f洛一定指向圆心,f洛⊥v任意两个f洛方向的指向交点为圆心;②任意一弦的中垂线一定过圆心;③两速度方向夹角的角平分线一定过圆心。

  ⑶求半径(两个方面):

  ①由轨迹图得出几何关系方程(勾股定理)

  ②利用几何关系:(速度的偏向角)?=偏转圆弧所对应的圆心角(回旋

  角)?=2倍的弦切角?,即?=?=2?

  ⑷、求粒子的部分圆周运动时间:t?圆心角(回旋角)

  2?(或360)0T

  ⑸、圆周运动有关的对称规律:特别注意在文字中隐含着的临界条件

  a、从同一边界射入的粒子,又从同一边界射出时,射入速度和射出速

  度与边界的夹角相等。

  b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。

  C、恰好出(不出)边界磁场的条件:与边界磁场相切。

  d、注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的.磁场的规律。文字中隐含着的临界条件

  a、从同一边界射入的粒子,又从同一边界射出时,射入速度和射出速

  度与边界的夹角相等。

  b、在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。C、恰好出(不出)边界磁场的条件:与边界磁场相切。

  d、注意:均匀辐射状的匀强磁场,圆形磁场,及周期性变化的磁场的规律。

高二物理知识点总结5

  匀变速直线运动

  1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

  注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

  (1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

  (2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

  2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

  注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

  3.推论:2as=vt2-v02

  4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

  5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

  自由落体运动

  只在重力作用下从高处静止下落的物体所作的运动。

  1.位移公式:h=1/2gt2

  2.速度公式:vt=gt

  3.推论:2gh=vt2

  牛顿定律

  1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

  a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

  b.力是该变物体速度的原因;

  c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

  d力是产生加速度的原因;

  2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

  a.一切物体都有惯性;

  b.惯性的大小由物体的质量决定;

  c.惯性是描述物体运动状态改变难易的物理量;

  3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的`质量成反比,加速度的方向跟物体所受合外力的方向相同。

  a.数学表达式:a=F合/m;

  b.加速度随力的产生而产生、变化而变化、消失而消失;

  c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

  d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

  4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

  a.作用力和反作用力同时产生、同时变化、同时消失;

  b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

高二物理知识点总结6

  1、物质是由大量分子组成的

  (1)单分子油膜法测量分子直径

  (2)对微观量的估算

  ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)

  ②利用阿伏伽德罗常数联系宏观量与微观量

  Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0.

  Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ.

  特别提醒:

  2、分子永不停息的做无规则的热运动(布朗运动扩散现象)

  (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。可以发生在固体、液体、气体任何两种物质之间。

  (2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。

  ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

  ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。

  ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

  (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。

  3、分子间的相互作用力

  (1)分子间同时存在引力和斥力,两种力的合力又叫做分子力。

  (2)分子之间的引力和斥力都随分子间距离增大而减小,随分子间距离的`减小而增大。但总是斥力变化得较快。

  (3)图像:

  理解+记忆:

  4、温度

  宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:

  5、内能

  ①分子势能

  分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。

  ②物体的内能

  物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度)

  ③改变内能的方式:做功与热传递都使物体的内能改变

  特别提醒:

  (1)物体的体积越大,分子势能不一定就越大,如0℃的水结成0℃的冰后体积变大,但分子势能却减小了。

  (2)理想气体分子间相互作用力为零,故分子势能忽略不计,一定质量的理想气体内能只与温度有关。

  (3)内能都是对宏观物体而言的,不存在某个分子的内能的说法,由物体内部状态决定。

高二物理知识点总结7

  一、电流:电荷的定向移动行成电流。 1、产生电流的条件: (1)自由电荷; (2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向;(注:在电源 外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极); 3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A(3)常用单位:毫安mA、微安uA;(4)1A=103mA=106uA

  二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示;1kΩ=103Ω,1MΩ=106Ω; 4、伏安特性曲线:

  三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的`电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻; 4、电源的电动势等于内、外电压之和;

  E=U内+U外;U外=RI;E=(R+r)I

  四、闭合电路的欧姆定律:闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比; 1、数学表达式:I=E/(R+r) 2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义; 3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;

  五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小; 六、导体的电阻:随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;

高二物理知识点总结8

  第2节库仑定律

  一、电荷间的相互作用

  1、点电荷:当电荷本身的大小比起它到其他带电体的距离小得多,这样可以忽略电荷在带电体上的具体分布情况,把它抽象成一个几何点。这样的带电体就叫做点电荷。点电荷是一种理想化的物理模型。VS质点

  2、带电体看做点电荷的条件:

  ①两带电体间的距离远大于它们大小;

  ②两个电荷均匀分布的绝缘小球。

  3、影响电荷间相互作用的因素:

  ①距离;②电量;③带电体的'形状和大小

  二、库仑定律:

  在真空中两个静止点电荷间的作用力跟它们的电荷的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

  注意:

  1、定律成立条件:真空、点电荷

  2、静电力常量——k=9.0×109N·m2/C2(库仑扭秤)

  3、计算库仑力时,电荷只代入绝对值

  4、方向在它们的连线上,同种电荷相斥,异种电荷相吸

  5、两个电荷间的库仑力是一对相互作用力

  库仑扭秤实验、控制变量法

  例题:两个带电量分别为+3Q和-Q的点电荷分别固定在相距为2L的A、B两点,现在AB连线的中点O放一个带电量为+q的点电荷。求q所受的库仑力。

高二物理知识点总结9

  一、磁场:

  1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场;

  3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

  二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

  1、磁感线是人们为了描述磁场而人为假设的线;

  2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;

  三、安培定则:

  1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

  2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

  3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

  四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

  五、磁感应强度:磁感应强度是描述磁场强弱的物理量。 1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的'国际单位:特斯拉 T, 1T=1N/A。M

  六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。2、定义式F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

  七、磁铁和电流都可产生磁场;

  八、磁场对电流有力的作用;

  九、电流和电流之间亦有力的作用;(1)同向电流产生引力; (2)异向电流产生斥力;

  十、分子电流假说:所有磁场都是由电流产生的;

  十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

  十二、磁场对运动电荷的作用力,叫做洛伦兹力

  1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

  (1)洛仑兹力F一定和B、V决定的平面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小 (3)洛伦兹力永远不做功。

  2、洛伦兹力的大小 (1)当v平行于B时:F=0 (2)当v垂直于B时:F=qvB

高二物理知识点总结10

  第一节认识静电

  一、静电现象

  1、了解常见的静电现象。

  2、静电的产生

  (1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。

  (2)接触起电:(3)感应起电:

  3、同种电荷相斥,异种电荷相吸。

  二、物质的电性及电荷守恒定律

  1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。

  2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。

  3、用物质的原子结构和电荷守恒定律分析静电现象

  (1)分析摩擦起电(2)分析接触起电(3)分析感应起电

  4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。

  第二节电荷间的相互作用

  一、电荷量和点电荷

  1、电荷量:物体所带电荷的多少,叫做电荷量,简称电量。单位为库仑,简称库,用符号C表示。

  2、点电荷:带电体的形状、大小及电荷量分布对相互作用力的影响可以忽略不计,在这种情况下,我们就可以把带电体简化为一个点,并称之为点电荷。

  二、电荷量的检验

  1、检测仪器:验电器

  2、了解验电器的工作原理

  三、库仑定律

  1、内容:在真空中两个静止的'点电荷间相互作用的库仑力跟它们电荷量的乘积成正比,跟它们距离的平方成反比,作用力的方向在它们的连线上。

  2、大小:

  方向:在两个电电荷的连线上,同性相斥,异性相吸。

  3、公式中k为静电力常量,

  4、成立条件

  ①真空中(空气中也近似成立),②点电荷

  第三节电场及其描述

  一、电场

  1、电场:电荷的周围存在着电场,带电体间的相互作用是通过周围的电场发生的。

  2、电场基本性质:对放入其中的电荷有力的作用。

  3、电场力:电场对放入其中的电荷有作用力,这种力叫电场力

  电荷间的静电力就是一个电荷受到另一个电荷激发电场的作用力。

高二物理知识点总结11

  一、三种产生电荷的方式

  1、摩擦起电: (1)正点荷:用绸子摩擦过的玻璃棒所带电荷; (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;

  2、接触起电: (1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

  3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引; (2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

  4、电荷的基本性质:能吸引轻小物体;

  二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

  三、元电荷:一个电子所带的电荷叫元电荷,用e表示。 1、e=1.6×10-19c; 2、一个质子所带电荷亦等于元电荷; 3、任何带电物体所带电荷都是元电荷的整数倍;

  四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力, 1、计算公式:F=kQ1Q2/r2 (k=9.0×109N.m2/kg2) 2、库仑定律只适用于点电荷(电荷的体积可以忽略不计) 3、库仑力不是万有引力;

  五、电场:电场是使点电荷之间产生静电力的一种物质。 1、只要有电荷存在,在电荷周围就一定存在电场; 2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

  六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度; 1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷; 2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反) 3、该公式适用于一切电场; 4、点电荷的电场强度公式:E=kQ/r2

  七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

  八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。 1、电场线不是客观存在的线; 2、电场线的.形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线.DAT (1)只有一个正电荷:电场线起于正电荷终于无穷远;(2)只有一个负电荷:起于无穷 远,终于负电荷; (3)既有正电荷又有负电荷:起于正电荷终于负电荷; 3、电场线的作用: 1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小); 2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向; 4、电场线的特点: 1、电场线不是封闭曲线; 2、同一电场中的电场线不向交;

  九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀; 1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

  十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。 1、定义式:UAB=WAB/q; 2、电场力作的功与路径无关;3、电势差又命电压,国际单位是伏特;

  十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功; 1、电势具有相对性,和零势面的选择有关;2、电势是标量,单位是伏特V; 3、电势差和电势间的关系:UAB= φA -φB;4、电势沿电场线的方向降低; 时,电场力要作功,则两点电势差不为零,就不是等势面; 4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一点移到另一点时,电场力不作功,所以电势能不变;5、电场线总是由电势高的地方指向电势低的地方; 6、等势面的画法:相临等势面间的距离相等;

  十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。 1、数学表达式:U=Ed; 2、该公式的使适用条件是,仅仅适用于匀强电场; 3、d是两等势面间的垂直距离;

  十三、电容器:储存电荷(电场能)的装置。 1、结构:由两个彼此绝缘的金属导体组成; 2、最常见的电容器:平行板电容器;

  十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。 1、定义式:C=Q/U; 2、电容是表示电容器储存电荷本领强弱的物理量; 3、国际单位:法拉 简称:法,用F表示 4、电容器的电容是电容器的属性,与Q、U无关;

  十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×10 9N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;) 1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压; 2、当电容器未与电路相连通时电容器两板所带电荷量不变;

  十六、带电粒子的加速: 1、条件:带电粒子运动方向和场强方向垂直,忽略重力; 2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02; 3、推论:当初速度为零时,Uq=1/2mvt2; 4、使带电粒子速度变大的电场又名加速电场;

高二物理知识点总结12

  1、光的电磁说

  (1)麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质

  (2)电磁波谱

  电磁波谱无线电波红外线可见光紫外线X射线射线产生机理在振荡电路中,自由电子作周期性运动产生原子的外层电子受到激发产生的原子的内层电子受到激发后产生的原子核受到激发后产生的

  (3)光谱①观察光谱的仪器,分光镜②光谱的分类,产生和特征

  2、发射光谱连续光谱产生特征

  i由炽热的固体、液体和高压气体发光产生的由连续分布的,一切波长的光组成ii明线光谱由稀薄气体发光产生的由不连续的一些亮线组成iii吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱

  3、光谱分析:

  一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。

  4、电磁波与机械波的比较:

  i共同点:都能产生干涉和衍射现象;它们波动的`频率都取决于波源的频率;在不同介质中传播,频率都不变。

  ii不同点:机械波的传播一定需要介质,其波速与介质的性质有关,与波的频率无关。而电磁波本身就是一种物质,它可以在真空中传播,也可以在介质中传播。电磁波在真空中传播的速度均为3。0×108m/s,在介质中传播时,波速和波长不仅与介质性质有关,还与频率有关。

  5、不同电磁波产生的机理

  无线电波是振荡电路中自由电子作周期性的运动产生的红外线、可见光、紫外线是原子外层电子受激发产生的伦琴射线是原子内层电子受激发产生的γ射线是原子核受激发产生的频率(波长)不同的电磁波表现出作用不同。

  红外线主要作用是热作用,可以利用红外线来加热物体和进行红外线遥感;

  紫外线主要作用是化学作用,可用来杀菌和消毒;

  伦琴射线有较强的穿透本领,利用其穿透本领与物质的密度有关,进行对人体的透视和检查部件的缺陷;

  γ射线的穿透本领更大,在工业和医学等领域有广泛的应用,如探伤,测厚或用γ刀进行手术。

高二物理知识点总结13

  1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流.

  2、三相交变电流的特点:值和周期是相同的

  三组线圈到达值(或零值)的时间依次落后1/3周期.

  3、电工学中分别用黄、绿、红三种颜色的线为相线(火线),黑色线为中性线(零线)。三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的`呢?

  4、端线、火线和中性线、零线.

  从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线.从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线.

  5、相电压和线电压.

  端线和中性线之间的电压叫做相电压(U相)(即每一个线圈两端电压).

  两条端线之间的电压叫做线电压(U线)(即2个线圈首端电压).

  我国日常电路中,相电压是220V、线电压是380V.

  6、三相AC的有关计算(其中w为线圈旋转角速度,Em为交压值)。

  e1=Em_sin(wt)

  e2=Em_sin(wt+2π/3)

  e3=Em_sin(wt-2π/3)

高二物理知识点总结14

  (一)曲线运动的条件:合外力与运动方向不在一条直线上

  (二)曲线运动的研究方法:运动的合成与分解(平行四边形定则、三角形法则)

  (三)曲线运动的分类:协力的性质(匀变速:平抛运动、非匀变速曲线:匀速圆周运动)

  (四)匀速圆周运动

  1受力分析,所受协力的特点:向心力大小、方向

  2向心加速度、线速度、角速度的`定义(文字、定义式) 3向心力的公式(多角度的:线速度、角速度、周期、频率、转)

  (五)平抛运动

  1受力分析,只受重力

  2速度,水平、竖直方向分速度的表达式;位移,水平、竖直方向位移的表达式

  3速度与水平方向的夹角、位移与水平方向的夹角

高二物理知识点总结15

  一、原子结构知识点:

  1、电子的发现和汤姆生的原子模型:

  (1)电子的发现:

  1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

  电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

  (2)汤姆生的原子模型:

  1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

  2、α粒子散射实验和原子核结构模型

  (1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成

  ①装置:

  ② 现象:

  a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

  b. 有少数α粒子发生较大角度的偏转

  c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

  (2)原子的核式结构模型:

  由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

  1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

  原子核半径小于10-14m,原子轨道半径约10-10m。

  3、玻尔的原子模型

  (1)原子核式结构模型与经典电磁理论的矛盾(两方面)

  a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

  b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

  (2)玻尔理论

  上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

  ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的',电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

  ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1

  ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

  n为正整数,称量数数

  (3)玻尔的氢子模型:

  ①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

  氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:

  其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)

  ②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

  其中n=1的定态称为基态。n=2以上的定态,称为激发态。

  二、原子核知识点

  1、天然放射现象

  (1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

  放射性:物质能发射出上述射线的性质称放射性

  放射性元素:具有放射性的元素称放射性元素

  天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象

  天然放射现象:表明原子核存在精细结构,是可以再分的

  (2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:

  2、原子核的衰变:

  (1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒

  γ射线是伴随α、β衰变放射出来的高频光子流

  在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子

  (2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

  一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m

  3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

  (1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

  (2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

  4、原子核的组成和放射性同位素

  (1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

  在原子核中:

  质子数等于电荷数

  核子数等于质量数

  中子数等于质量数减电荷数

  (2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

  正电子的发现:用α粒子轰击铝时,发生核反应。

  发生+β衰变,放出正电子

  三、核能知识点:

  1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

  2、质能方程:爱因斯坦提出物体的质量和能量的关系:

  E=mc2——质能方程

  3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

  吸收或放出的能量,与质量变化的关系为:

  为了计算方便以后在计算核能时我们用以下两种方法

  方法一:若已知条件中以千克作单位给出,用以下公式计算

  公式中单位:

  方法二:若已知条件中以作单位给出,用以下公式计算

  公式中单位:

  4、释放核能的途径——裂变和聚变

  (1)裂变反应:

  ①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

  ②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

  链式反应的条件:

  ③裂变时平均每个核子放能约1Mev能量

  1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

  (2)聚变反应:

  ①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。

  ②平均每个核子放出3Mev的能量

  ③聚变反应的条件;几百万摄氏度的高温

【高二物理知识点总结】相关文章:

高二物理知识点总结12-26

高二物理知识点总结08-30

高二物理知识点总结归纳11-16

高二物理知识点总结归纳06-28

高二物理知识点总结(15篇)01-05

高二物理知识点总结15篇12-04

高二物理必修二知识点总结07-18

高二物理上册知识点总结09-24

高二物理知识点总结归纳(12篇)08-30

高二物理必修三知识点归纳总结11-23