初中数学三角形知识点总结

时间:2025-03-30 10:18:47 知识点总结 我要投稿
  • 相关推荐

初中数学三角形知识点总结

  总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以提升我们发现问题的能力,因此,让我们写一份总结吧。总结怎么写才不会流于形式呢?以下是小编帮大家整理的初中数学三角形知识点总结,希望能够帮助到大家。

初中数学三角形知识点总结

  等边三角形

  ⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。

  ⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)

  ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线或对角的平分线所在的直线。

  ⑷等边三角形的重要数据

  角和边的数量 3

  内角的大小 60°

  ⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)

  ⑹等边三角形内任意一点到三边的距离之和为定值(等于其高)

  三角形的垂心

  锐角三角形垂心在三角形内部。

  直角三角形垂心在三角形直角顶点。

  钝角三角形垂心在三角形外部。

  垂心是从三角形的各个顶点向其对边所作的三条垂线的交点。

  三角形三个顶点,三个垂足,垂心这7个点可以得到6组四点共圆。

  三角形上作三高,三高必于垂心交。

  高线分割三角形,出现直角三对整,直角三角有十二,构成九对相似形,四点共圆图中有,细心分析可找清,三角形垂心的性质

  设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、

  C的对边分别为a、b、c,p=(a+b+c)/2.

  1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外.

  2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;

  3、 垂心H关于三边的对称点,均在△ABC的外接圆上。

  4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF。

  5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

  6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆。

  7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+AC/AQ·tanC=tanA+tanB+tanC。

  8、 设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

  9、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

  10、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短(施瓦尔兹三角形,最早在古希腊时期由海伦发现)。

  11、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。

  12、 设锐角△ABC内有一点P,那么P是垂心的充分必要条件是PBxPCxBC+PBxPAxAB+PAxPCxAC=ABxBCxCA。

  13、设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3。

  14、三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。

【初中数学三角形知识点总结】相关文章:

初中数学知识点总结11-16

初中数学圆知识点总结08-12

初中数学圆的知识点总结02-12

初中数学圆知识点总结02-06

初中数学知识点总结12-21

初中数学圆的知识点总结10-14

初中数学知识点总结10-31

初中数学知识点总结03-15

初中数学函数知识点总结03-01

2021初中数学知识点总结12-31