分数的基本性质的教案

时间:2025-10-09 12:45:21 教案 我要投稿

分数的基本性质的教案

  作为一位杰出的老师,常常需要准备教案,教案有助于学生理解并掌握系统的知识。那么教案应该怎么写才合适呢?下面是小编为大家整理的分数的基本性质的教案,希望对大家有所帮助。

分数的基本性质的教案

分数的基本性质的教案1

  教学目标:1,使同学理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2,培养同学发现问题和解决问题的能力。渗透"事物之间是相互联系"的辩证唯物主义观点。

  教学重点:掌握分数的基本的性质,能运用分数的基本性质解决有关的`问题。

  教学难点:理解分数的基本的性质。

  教学课型:新授课

  具准备:课件

  教学过程:

  一,复习铺垫,准备迁移 [课件1]

  1,120÷30的商是多少 被除数和除数都扩大3倍,商是多少被除数和除数都缩小10倍呢

  2,比较下列每组数的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分数改写成两个数相除的形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,发展智能

  1,同学操作:将手中的纸圆片平均分成若干份。

  2,反馈。

  (1)提问:A,若要求剪下其中的一半,想想剪下的份数各自占圆的几分之几

  B,虽然每个同学所剪的份数不同,但它们之间大小关系怎样

  板书: 1/2=2/4=3/6

  C,观察一下:这些分数的分子,分母变化有什么规律

  (2)引导同学概括出分数的基本性质,并与前面的猜测相回应。

  (3)小结:这里的"相同的数",是不是任何数都可以呢

  (零除外)

  板书:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

  3,分数的基本性质与商不变的性质的比较。

  提问:在除法里有商不变的性质,在分数里有分数的基本性质。想一想:根据分数与除法的关系以和整数除法中商不变的性质,你能说明分数的基本性质吗

  4,巩固认识。

  P109 。1

  (2)说数接龙。

  5/6=5+5/( )……

  三,运用延伸,深化概念

  1,要求大小不变。[课件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分数中哪两个分数相等 [课件3]

  3/4 21/32 15/20 1/5 4/20

  习后提问:A,依据是什么

  B,3/4和1/5哪个大 你是怎么比较出来的

  C,那么,从中你又有什么新发现 你的新发现是什么

  四,全课总结

  提问: A,这节课你学习了什么

  B,运用分数的性质,你能做什么

  C,本节课你还有哪些疑问 你还想从哪些方面去探索分数

  的知识呢

  五,家作

  P109 。3,5,6

  板书设计: 分数的基本性质

  1/2=2/4=3/6

  分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

分数的基本性质的教案2

  教学内容:省编义务教材第十册第91—93页例1、例2。

  教学目标:

  1、体验分数基本性质的探究过程,建构分数基本性质的意义内涵。

  2、沟通分数的基本性质和商不变性质的内在联系,实现新知化归旧知,并与后面约分和通分的学习作好前期孕伏。

  3、通过猜想、验证、得出结论这充分自主的数学活动,促进学生学习经验的不断积累。

  课前准备:

  课件,学具袋一个(线段图纸、长方形、绳子)、探究纸一张

  教学过程:

  1.创设情境,作好铺垫

  出示四分之二后说:老师的信封里有一道算式,这道算式和这个分数的值相等,你们猜这是一道怎样的算式?(除法算式。)你能具体猜出是怎样一道除法算式。(2÷4)

  为什么你会猜是一道除法算式?(分数与除法有密切的关系)

  除法与分数有什么样的关系?

  (黑板上出示:被除数÷除数=)

  根据2÷4这道除法算式,每人都试着说一道与它相等的除法算式。(根据学生板书:1÷23÷64÷85÷10100÷……)

  为什么你认为100÷与2÷4的商是一样的?(2和4同时乘以50商不变,这是根据商不变性质)

  什么是商不变性质?(出示:被除数和除数同时乘以或除以相同的数(0除外),商不变。)

  2、迁移猜想,引疑激思

  分数与除法有这样的关系,除法中有商不变性质,那你们猜分数中有可能存在着类似的性质吗?(有)你能具体说一说?

  交流得出:分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  3、自主探究,验证猜想

  也许你们的猜想是正确的,科学家的.发现往往也是从猜想开始的,但是只有通过验证得到的结论才是科学的,这节课我们也学着来做一名小数学家。

  (1)初步验证

  ①出示:探究报告单,让学生读要求:

  a.同桌合作:两人各写一个分数,将它的分子、分母同时乘以或除以一个相同的数,算出新的分数。

  b.选择合理的方法验证所前后两个分数是否相等。

  c.填写好探究报告单。

  选择探究的

  分 数

  分子和分母同时乘以或除以

  一个相同的数

  得到的

  分 数

  选择的分数与得到的分数是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  选择的分数与得到的分数是否相等相等()不相等()

  猜想是否成立成立()不成立()

  *:验证方法可用折纸、画线段图、计算、实物……

  ②学生合作进行探究。

  ③全班交流:

  a、同桌一起上来,拿好探究报告单及验证材料等。

  b、两人合作,一人讲解、一人验证演示。

  c、得到结论:

  (交流2-3组后)问全班同学:你们得到怎样的结论?(一致通过)

  刚才我们通过集体努力用不同的方法、不同的分数验证了我们的猜想是成立的。这就是分数的基本性质,板书:分数的基本性质。(齐读)

  4、议论争辩,顿悟创新

  读一读分数的基本性质,你认为哪些字词是比较重要的。这里的“相同的数”指的是什么数?为什么要“0除外”?

  5、训练技能,激励发展

  刚才我们通过自己的猜想、验证得出的这条规律,学习了分数的基本性质,到底有什么作用呢?让我们一起来体会一下。

  (1)练习明目的

  根据分数的基本性质,填空。

  1/2=()/8=5/()=()/6=7/()

  采取师生对数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。

  (2)慧眼辩是非

  (3)变式练思维

  把下面每组中的异分母分数化成同分母分数。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分数的分母相同了,有什么作用?揭示学习分数的基本性质的重要性,鼓励学生学好、用好。

  (4)竞赛促智慧

  ①在1—9九个数字中任选一些数字组成大小相等的分数。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6这三组。

  并让学生继续往下说,从而得出:任何一个分数与之相等的分数有无数个。

  ②出示:1/a=7/b(说明:a、b都不是0。)

  抢答:a=2、a=3、a=6、b=28、b=56时a或b的值。

  连贯口答:a=1、2、3、4、5……时b的值。(渗透正比例)

  讨论:a、b之间的关系是怎样的?为什么会存在这样的关系?依据是什么?

  6、回顾,掌握方法

  今天这节课我们学习的分数的基本性质,回忆一下我们是怎样学习的?

  学生可能会回答:

  生1:我们是根据“商不变的性质”来学习“分数的基本性质”的。

  生2:我们是通过猜测的方法学的。

  生3:我们还用验证的方法学习。

  ……

  结果语:是的,这节课,我们利用除法和分数的关系以及商不变性质,猜想出分数的基本性质,并且进行了验证与运用,其实数学知识都是相互联系的,学习数学就要学会利用已有知识,去学习新的知识,这就是学习数学的一把金钥匙。老师把这把金钥匙送给每一位同学。

分数的基本性质的教案3

  教学目标:

  1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

  2、培养学生自主迁移、自主构建知识的能力。

  3、搞清求比值和化简比的区别与联系,建立事物间相互联系的观念,对学生进行辨证唯物主义的思想教育。

  教学重点:比的基本性质和化简比

  教学难点:求比值和化简比的区别和联系

  教具:小黑板

  一、故事引入

  引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?

  让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少?

  教师根据学生的回答板书:

  3÷4 6÷8 9÷12 3:4 6:8 9:12

  =3/4 =6/8 =9/12 =3/4 =6/8 =9/12

  1、三个除法算式有什么关系?

  2、三个分数的值相等吗?

  3、三个比相等吗?(相等)为什么?

  4、猴王的分配公平吗?(公平)为什么?

  是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。

  三、探讨规律

  师:上面的三个比什么变了?什么没变?

  生:比的前后项变了,比值没变。

  师:比的前后项是如何变化的?变化有没有一定的规律可循?下面我们来共同寻找、共同探讨。

  1、首先让学生从左往右观察前后项的变化:前项3→6(3→9、6→9),后项4→8(4→12、8→12)分别是怎么变化的?让学生通过“观察→思考→讨论”后回答,教师根据学生的回答板书:

  3:4=(3×2):(4×2)=6:8

  3:4=(3×3):(4×3)=9:12

  6:8=(6×1.5):(8×1.5)=9:12

  上面的变化谁能用一句概括性的语言表达出来,让学生讨论回答,教师板书:

  2、然后从右往左观察前后项又是如何变化的:

  9:12=(9÷3):(12÷3)=3:4

  6:8=(6÷2):(8÷2)=3:4

  9:12=(9÷1.5):(12÷1.5)=6:8

  3、讨论:上面同乘以或除以的“数”是不是任何数都可以?

  4、揭示课题:这就是我们今天学习的“比的基本性质”。

  5、尝试:

  (1)、4:5的前项扩大2倍,要使比值不变,比的后项应该( )

  (2)、如果3:2的后项变成15,要使比值不变,比的前项应该为( )

  四、运用规律

  3:4、6:9、8:12这三个比中,比的前后项为互质数的是哪个比?(3:4),像这种前后项为互质数的'比叫最简整数才(简称最件简比)。(板书)

  1、化简比。

  出示例1:把下面各比化成最简单的整数比。

  (1)14:21 (2)1/6:2/9 (3)0.25:1.2 30:10

  让学生讨论14:21如何化简?

  2、小结化简比的方法。

  师:谁来说说整数比如何化简,分数比如何化简,小数比如何化简?化简比的方法是什么?

  3、比较化简比和求比值的异同。

  强调:比值是一个数,化简比仍是一个比。(板书)

  五、强化认识

  1、判断:

  ①、1/2:1/4化简后得2( )

  ②、比的前项和后项同时乘以或除以相同的数,比值不变( )

  ③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3( )

  ④、圆周率表示一个圆的周长和直径的比 ( )

  2、填空。(小黑板出示)

  (1)、3÷4=()/()=()÷()=21:()

  (2)、两个的比值是5/6,这两个数的最简比是()。

  3、甲数是乙数的50%,用比的角度来描述这两个数的关系。

  4、А、Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比

  六、总结全课

  今天我们学习了什么?应用它可以解决什么问题?化简比和求比值是否一样?

分数的基本性质的教案4

  教学目的:

  理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

  2.理解和掌握分数的基本性质。

  3.较好实现知识教育与思想教育的有效结合。

  教学难点:

  理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

  教学准备:

  板书有关习题的幻灯片。

  教学过程:

  一、复习

  1.出示

  在括号里填上适当的数:

  指名说一说结果,并说一说你是根据什么填的?

  二、课堂练习:

  1.自主练习第4题。

  学生先独立做,教师巡视,并个别指导,集体订正。

  教师板书题目中的线段,指名让学生板演。

  在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

  怎样找出相等的分数?

  让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

  然后要求学生在书上把这几个相应的点找出来。指名板演。

  2.自主练习第5题。

  先让学生独立做,教师巡视。个别指导。

  指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

  教师根据学生的回答选择几个题目进行板书。

  3.自主练习第6题。

  先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

  集体订正。指名说一说自己的计算过程和结果。

  教师根据学生的.回答选择几个题目进行板书。

  4.自主练习第7题。

  学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

  集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

  5.自主练习第8题。

  学生先独立做。

  集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

分数的基本性质的教案5

  这个教学设计的一个显著特点是注重学生的学习方法。从引导学生进行大胆猜想、实践感知、观察讨论到共同总结归纳,完全是为了培养学生的自主探究能力和合作交流能力。

  在教学分数的基本性质时,我充分激发学生的学习热情,为他们提供充足的数学学习机会,帮助他们通过自主观察、讨论、合作和探究学习,真正理解和掌握基本的数学知识和技能,充分发挥学生的主动性和创造性。因此,在数学课堂教学中,必须将教师的教导转化为学生的`学习,深入研究学习方法,建立探究式学习模式。

  1、让学生在自主探索中科学验证

  教师在课堂中引导学生通过商不变性质进行探究,激发他们大胆猜想,并在适当的时机揭示猜想内容,对学生的猜想提出质疑,引导他们自主探究。通过创设自主探索、合作互助的学习方式,学生可以选择探究的学习材料和参与研究的学习伙伴,充分尊重他们的思维特点。在自主探索中,鼓励学生用自己的方式来验证猜想,从而增强他们的学习体验和自信心。整个教学过程以“猜想——验证——完善”为主线,强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决。教学目标的设定考虑到学生已掌握除法和分数的关系,及商不变性质的知识基础,使学生能够进行具体操作。教学过程体现学生学为主,教师为辅的教学理念。

  2、让学生在分层练习中巩固深化

  练习设计的初衷是为了帮助学生巩固和提升他们对数学知识的理解和掌握。通过设置不同层次和类型的题目,让学生逐步深入学习,从而达到系统掌握知识的目的。第1、2题是基础练习,帮助学生理解概念,掌握基本知识;第3题则是在基础上进行巩固练习,加深对知识的理解;第5题是综合练习,结合整除和分数的基本性质,考察学生对知识的综合运用能力。整个练习的设计注重渐进式学习,旨在提高学生的学习效果。

  3、让多媒体技术和学科教学的整合

  在教学中,我善于运用多媒体技术,设计生动有趣的课件,注重直观呈现和动态展示,让学生能够深入体验知识的构建过程,而不仅仅是死记硬背知识点。通过现代教育技术的应用,我能够激发多种感官参与,提升学生的学习效果。在课堂教学中,我注重引导学生动手实践,例如进行折纸活动等,让学生在轻松愉快的氛围中掌握知识。同时,我倡导互动式教学,通过按按按的反馈功能,及时了解每位学生对新知识的掌握情况,从而有针对性地进行教学调整,帮助学生更好地成长。

  总之,本课程的设计注重激发学生的学习兴趣,引导他们积极参与,培养他们的创新精神和实践能力,促使他们在情感态度方面得到全面发展。我们致力于让学生成为学习的主体,充分发挥他们的主动性,促进其全面发展。希望学生在这门课程中能够获得全方位的成长和提升。

分数的基本性质的教案6

  教学目标:

  1、理解分数的基本性质。

  2、初步掌握分数的基本性质。

  3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。

  教学重点:理解与掌握分数的基本性质。 教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。

  设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。

  在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。

  通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。 通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。

  在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。

  第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。

  教学过程: 复习旧知,导入新课 被除数 除数= 根据120 30=3 填数 (120 3) (40 3)=( ) (120 ___) (40 10)=4 (复习商不变性质) 验证并结实课题 学生用准备好的两张纸,进行动手操作。(感知 = ) 教师再演示,引导学生发现 、 、 、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考) 新授,探索新知 启发引导,揭示规律 (1) = = = =

  从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。 ,分数的分子分母有什么变化? 呢? 它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。 归纳性质 谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。 这里指的相同的数是指什么数? 指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。

  请全班同学将结语说完整,全班读。 小结:就是我们今天学习的'内容:分数的基本性质。看书质疑。 勾出关键词语,帮助理解掌握。 (在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。) 巩固练习 在括号里填上适当的数使等式成立 几组相等分数的天空练习

  (用计算机将题目演示在大屏幕上,全般一起练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)

  3、请找我的好朋友练习。(以游戏的形式来进行)

  要求:(1)将几张写有分数的卡片发给几位同学,请 他们看清楚上面的分数。

  ( 2 )练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。 (先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)

  4、判断对错 (1) = = ( ) (2) = = ( ) (3) = = ( ) (4) = = ( )

  (这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)

  5、思考练习题 = 课堂总结 总结本课内容,复述分数的基本性质。

分数的基本性质的教案7

  教学目标:

  1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

  3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

  教学重点:

  理解分数的基本性质。

  教学难点:

  能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

  教学过程:

  一、创设情境,激趣引新,

1、师:故事引入,揭示课题

  同学们,你们听说过阿凡提的故事吗?今天老师这里有一个 老爷爷分地的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

  故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的 ,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

  3、学生猜想后畅所欲言。

  4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

  二、探究新知,解决问题

  1、 动手操作、形象感知

  (1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

  (2)学生独立操作验证。

  方法1、涂、折、画的方法

  方法2、计算的方法。

  方法3:商不变的性质。

  (3)观察,说说你发现了什么?

  2、出示做一做(1)

  (1)请同学们认真观察,同桌之间说一说这三个图形的涂色部分分别表示什么意义,并用分数表示出来。

  (3)观察,说说你发现了什么? = = (课件揭示)

  (4)交流:你还有什么发现?

  分数的分子和分母变化了,分数的大小不变。

  分数的分子和分母都乘以相同的数,分数的大小不变。

  (板书:都乘以相同的数)(课件演示)

  3、出示做一做图片(2),学生独立填写分数。

  (1)说说你是怎么想的?

  (2)交流,你发现了什么?(分数的分子和分母都除以相同的数,分数的大小不变。)(板书:都除以相同的数)

  4、想一想:引导归纳分数的基本性质

  (1)从刚才的演示中,你发现了什么?

  板书:分数的分子、分母都乘以或除以相同的数,分数的大小不变。

  (2)补充分数的基本性质:课件出示两个式子,问学生对不对?讲解关键词都、

  相同的数、0除外。 都可以换成哪个词?同时。

  板书:分数的'分子、分母都乘以或除以相同的数(0除外),分数的大小不变。

  (3)揭题:分数的基本性质。先让学生在课本中找出分数基本性质中的关键字词并做上记号(画起来或圈出来),要求关键的字词要重读。(课件揭示)

  5、梳理知识,沟通联系:分数基本性质与学过的什么知识有联系?你能举例说说吗?

师:我们学习了分数与除法的关系,知道分数可以写成除法的形式。现在我们把商不变性质,分数基本性质,分数与除法的关系这三者联系起来,你发现了什么?(生举例验证,如:3/4=34=(33)(43)=912=9 /12)(课件揭示)

  师:其实,数学知识中有许多地方是像商不变性质和分数基本性质一样相互沟通的,同学们要学会灵活运用,才能做到举一反三,触类旁通,取得事半功倍的效果。你们想挑战吗?

  6、趣味比拼,挑战智慧

  给你们一分钟时间,写出几个相等的分数,看谁写得既对又多。

  交流汇报后,提问:如果给你时间,你还能不能写,到底能写几个?

  三、多层练习,巩固深化。

  1、考考你(第43页试一试和练一练第2题)。

  2/3=( )/18 6/21=2/( )

  3/5 =21/( ) 27/39=( )/13

  5/8=20/( ) 24/42=( )/7

  4/( )=48/60 8/12=( )/( )

  2、涂一涂,填一填。(练一练第1题)

  3、请你当法官,要求说出理由.(手势表示。)

  (1)分数的分子、分母都乘或除以相同的数,分数的大小不变。( )

  (2)把 15/20的分子缩小5倍,分母也同时缩小5倍,分数的大 小不变。( )

  (3)3/4的分子乘3,分母除以3,分数的大小不变。( )

  (4) 10/24=102/242=103/243 ( )

  (5)把3/5的分子加上4,要使分数的大小不变,分母也要加上4。( )

  (6)3/4=30/4 0=30/4 0 ()

  4、找一找:课件出示信息:请帮小熊和小山羊找回大小相等的分数。

  5、(1)把5/6和1/4都化成分母是12而大小不变的分数;

  (2)把2/3和3/4都化成分子是6而大小不变的分数 6、2/5分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

  四、拾捡硕果,拓展延伸。

  1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?

  (或用分数表示这节课的评价,快乐和遗憾各占多少?)

  2、学了这节课,现在你知道阿凡提为什么会笑,如果你是阿凡提,你会对三兄弟说些什么?从这个故事中,你还知道了什么?师总结:看来学好数学还是很重要的!祝贺同学们都跟阿凡提一样聪明!(献上有节奏的掌声)

  3、拓展延伸

  师:最后,阿凡提为了考考同学们,他特意挑选了一道题,要同学们选择来完成,有信心去完成吗?

  比一比:三杯同样多的牛奶,小明喝了其中一杯牛奶的2/3,小红喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人谁喝得最多?谁喝得最少?

  五、动脑筋退场

  让学生拿出课前发的分数纸。要求学生看清手中的分数。与1/2相等的,报出自己的分数后站在教室的前面,与2/3相等的站在教室的后面,与3/4相等的站在教室的左边, 与4/5相等的站在教室的左边。

分数的基本性质的教案8

  教学目标:

  1、经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

  2、培养学生的观察、比较、归纳、总结概括能力。

  3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  教学设计

  一、创设情境

  师:(板书:2÷3)一个除法算式可以变戏法,你们信吗?谁能变出一个和它大小一样的除法算式?

  生:4÷6。

  师:还有吗?

  生:10÷15。

  师:还有吗?

  生:20÷30。

  ......

  师:简直太多了!你们是根据什么变出这些除法算式?(板:商不变)你能结合这其中的'一个算式说一说吗?

  师:它还能变,把这个算式变成一个分数你会吗?

  生:2/3。

  师:瞧,数学王国里有多神奇,这么简单的一个除法算式,其中蕴藏着商不变的性质,我们还发现了分数与除法的关系,那你们能猜出今天我们要探索数学王国里的什么知识吗?(板书:分数的基本性质)

  二、自主探究,分层辅导

  师:谁能用分数来表示图中的阴影部分?

  生:9/12或者3/4。

  师:从这两个分数中,你能发现什么?

  师:一个分数是怎样变成和它大小相等的另外一个分数的呢?我们再来变个魔术。

  (1)出示一张长方形白纸,边演示边说:“这是一张白纸,我们把它先对折,再涂一涂,看你能得到什么分数,把它记录在你的本上。比一比看谁变得最快。

  (2)学生动手操作、汇报(将学生的作品粘在黑板上)

  师:和他一样的都折出1/2的举起作品互相看看。

  (3)如果继续对折下去,你还能得到哪些不同的分数呢?边折边记录下来。(老师巡视提示:动作快的同学快去帮帮你周围那些动作慢的同学吧!)

  师:你又得到了哪些分数?怎样得到的?(将学生的作品继续粘在黑板上)

  师:观察比较这一组的分数,你能发现什么呢?

  生:分数相等。

  (板书:1/2=2/4=4/8)

  师:你怎么知道的?

  生:看图知道的。

  师:这一组分数的分子、分母是怎样变化的?

  生:都乘相同的数。

  师:反过来看分子、分母又是怎样变化的?

  生:都除以相同的数。

  师:你们能用概括的语言说一说分数大小不变的规律吗?

  师:为什么0除外?

  师:分数大小不变的规律中要注意什么?

  三、深化理解,灵活运用

  1、媒体出示教材第44页第1题。练习后进行交流,2、出示教材第44页第2题,由学生直接进行抢答。

  3、讨论教材第44页第3题的第(2)小题。

  (本题比较开放,教师要做好引导,可以先由学生独立完成,然后四个人交流想法。)

  4、大比拚

  师:你们可真棒,怎样也没难住你们,再来一个挑战!谁来向老师挑战,挑战者出题,老师说出相等的分数,其他同学做裁判。

  四、全课总结

  这节课你有什么收获?(学生从知识、能力、情感方面进行自我收获总结)

分数的基本性质的教案9

  教学目标

  1.使学生对数的整除的有关概念掌握得更加系统、牢固.

  2.进一步弄清各概念之间的联系与区别.

  3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

  4.掌握分数、小数的基本性质.

  教学重点

  通过对主要概念进行整理和复习,深化理解,形成知识网络.

  教学难点

  弄清概念间的联系和区别,理解易混淆的概念.

  教学步骤

  一、铺垫孕伏.

  教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

  在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

  揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

  二、探究新知.

  (一)建立知识网络.【演示课件“数的整除”】

  1.思考:哪个概念是最基本的概念?并说一说概念的内容.

  反馈练习:

  在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.

  教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

  教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

  2.说出与整除关系最密切的'概念,并说一说概念的内容.

  反馈练习:下面的说法对不对,为什么?

  因为15÷5=3,所以15是倍数,5是约数. ( )

  因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )

  明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

  3.教师提问:

  由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.

  根据一个数所含约数的个数的不同,还可以得到什么概念?

  互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

  互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

  4.讨论互质数与质数之间有什么区别?

  互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

  5.教师提问:

  如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

  只有什么数才能做质因数?

  什么叫做分解质因数?

  只有什么数才能分解质因数?

  6.教师提问:

  谁还记得,能被2、5、3整除的数各有什么特征?

  由一个数能不能被2整除,又可以得到什么概念?

  (二)比较方法.

  1.练习:求16和24的最大公约数和最小公倍数.

  2.思考:求最大公约数和最小公倍数有什么联系和区别?

  (三)分数、小数的基本性质.

  1.教师提问:

  分数的基本性质是什么?

  小数的基本性质是什么?

  2.练习.

  (1)想一想,小数点移动位置,小数大小会发生什么变化?

  (2)

  (3)下面这组数有什么特点?它们之间有什么规律?

  0.108 1.08 10.8 108 1080

  三、全课小结.

  这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

  联系和区别,并且强化了对知识的运用.

  四、随堂练习

  1.判断下面的说法是不是正确,并说明理由.

  (1)一个数的约数都比这个数的倍数小.

  (2)1是所有自然数的公约数.

  (3)所有的自然数不是质数就是合数.

  (4)所有的自然数不是偶数就是奇数.

  (5)含有约数2的数一定是偶数.

  (6)所有的奇数都是质数,所有的偶数都是合数.

  (7)有公约数1的两个数叫做互质数.

  2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?

  18 30 45 70 75 84 124 140 420

  3.填空.

  在1到20中,奇数有( );偶数有( );质数有( );合数有( );

  既是质数又是偶数的数是( ).

  4.按要求写出两个互质的数.

  (1)两个数都是质数.

  (2)两个数都是合数.

  (3)一个数是质数,一个数是合数.

  5.说出下面每组数的最大公约数和最小公倍数.

  42和14 36和9

  13和5 6和11

  6.0.75=12÷( )=( ) :12=

  五、布置作业

  1.把下面各数分解质因数.

  24 45 65 84 102 475

  2.求下面每组数的最大公约数和最小公倍数.

  36和48 16、32和24 15、30和90

  六、板书设计

  数的整除分数、小数的基本性质

  数学教案-数的整除 分数、小数的基本性质

分数的基本性质的教案10

  内容:P15、16例1、2 ,练习四第1-3题。

  目标:

  1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。

  2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

  重点:正确理解与分析运用分数的基本性质。

  过程:

  一、创设情境,导入新课。

  “大圣”分桃:

  话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?

  二、师生共研、发现规律。

  师生共同揭秘“分桃”内幕。

  人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:

  1÷2=1/2=2/4=4/8

  从上面这三个分数的相等关系,你发现了什么?

  从左往右看:

  1/2 = 1×2 / 2×2 = 2/4

  从右往左看:

  2/4 = 2÷2 / 4÷2 = 1/2

  1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。

  观察分子、分母的变化,同时归纳小结。

  学生试,验证自己提出的观点是否正确。

  小结:

  分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。

  三、数学小报,再次验证。

  1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。

  2.将折得的小报中数学趣题版用阴影显示出来。

  3.将四张的折叠结果重叠,得出数学趣题版面大小。

  4.针对式子进行口头表述。

  四、理解性质、简单运用。

  例2的'教学

  (1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。

  请同学们理清题意,然后进行转化。

  (2)反馈。

  (3)质疑

  让学生通过讨论,深化对分数大小不变的要求的理解。

  (4)议一议

  由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。

  五、练习巩固、拓展提高。

  1.课堂活动

  2.提取第一题的结果,进行深入思考:

  当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?

  结论:大小不变,分数单位要变。

  六、全课总结:

  这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?

  七、作业:

  练习四第1-3题。

分数的基本性质的教案11

  教学目标

  使学生进一步掌握分数的基本性质,并能运用这一性质,比较熟练地进行约分和通分。

  教学重点、难点

  重点、难点:分数的基本性质;约分和通分。

  教具、学具准备

  教学过程

  备注

  一、知识整理和基础训练

  1、在下面括号里填上合适的数。(投影出示)

  1/3=()/159/18=()/64/7=16/()8/32=1/()

  2/5=()/35=18/()36/72=()/88=1/()

  12/18=36/()=()/36=6/()=()/6

  同桌交流,说一说你是怎样想的,根据是什么?

  2、把下面各分数约分,是假分数的要化成带分数。

  40/45、64/10、56/24、120/80、60/144、100/90、2又20/24

  学生独立练习,请两位学生做在投影片上,然后集体反馈、纠错。同时请学生说一说你是怎样约分的?约分时要注意什么?

  (1)要约分最简分数;

  (2)结果是接分数的要化成带分数;

  (3)带分数约分,只要把分数部分约分,约分后不要丢掉整数部分。

  二、疏理沟通

  1、判断。(投影出示,学生判断后,要求说出判断的理由)

  (1)分数的分子和分母都乘以或除以相同的数,分数的大小不变。........()

  (2)把3/8的`分子加上3,分母加上8,分数的大小不变。..........()

  (3)分子、分母没有公约数的分数,叫做最简分数。.............()

  (4)36/21=12/21=12/7...................()

  (5)4又12/15=4又4/5=4/5.............()

  2、计算下面各题:

  10÷2526÷6598÷4255÷33

  学生独立练习后反馈、讲评,请学生说一说,你是怎么计算的?为什么要把算式改写成分数形式计算。

  三、深化提高

  1、填空课本第112页第10题,先请学生说一说怎样把低级单位名数聚成高级单位名数,最后结果怎样表示?然后独立作业、反馈。

  2、练习:课本第112页第11、12题。

  教学过程

  备注

  学生练习后,反愧讲评。

  引导学生讨论:

  (1)通分的关键是什么?

  (2)在通分练习中应注意什么?

  四、课堂小结

  这节课中你运用了什么知识?解决了什么问题?

  五、作业《作业本》

分数的基本性质的教案12

  教学内容人教课标实验教材五年级下册P75分数的基本性质

  教学目标

  1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质。

  2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

  3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

  教学重点使学生理解分数的基本性质。

  教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

  教学关键:经历预测猜想——实验分析——合情推理——探究创造的过程

  教学过程:

  一、故事导入,确定目标。

  1.唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?

  2.通过这节课的学习同学们就知道其中的奥秘了!板书课题,共议目标。

  二、目标的教学

  1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之一、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

  2、仔细观察三张纸的涂色部份,你们能发现什么?我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?现在你们知道孙悟空为什么笑了吗?请同学回答。猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的.大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

  把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

  师板书:分数的分子分母同时乘相同的数,分数的大小不变。

  这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

  我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

  师板书:或者除以

  板书八分之四同时除以0,问:这个式子成立吗?(打上问号)不成立,为什么?因为0不能作除数,0不能作除数,所以这个式子是错误的。(画*)我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)不成立,因为在分数当中分母相当于除数,除数不能为0。对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画*)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话?0除外。师板书:0除外。到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

  ”同时“和”相同的数“(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

  3、教学例2

  出示例2:把3/4和15/24化成分母是8而大小不变的分数。

  思考:要把3/4和15/24

分数的基本性质的教案13

  教学目标

  进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。

  教学重难点

  旋择适当的方法进行分数的大小比较。

  教学准备 分数卡片

  教学过程

  一、基本练习

  学生自由练习

  互相说一个分数,再通分。

  学生汇报 纠错

  二、集中练习

  教师出示:比较下面各组分数的大小

  1、 和 和

  2、 和 和

  请同学评讲

  课本练习68页第九题 把下面分数填入合适的圈内。

  比 大的分数有:

  比 小的分数有:

  师生讨论:怎样快速的分类?

  自由说一个比 的分数。并说出理由。

  三、解决实际问题的`练习

  小明:我10步走了6米,

  小红:我7步走了4米。

  问:谁的平均步长长一些?

  小组讨论,明确解题步骤。

  小明:6÷10= =

  小红:4÷7=

  因为 = = >

  所以 >

  答:小明的平均步长长一些。

  四、拓展练习:

  下面3名小棋手某一天训练的成绩统计

  总盘数赢的盘数赢的盘数占总数的几分之几

  张129

  李107

  赵138

  谁的成绩最好?

  小组合作集体解决题型。

  三个分数的大小比较,怎样比较较好?

  五、课堂作业

  68页第11题

分数的基本性质的教案14

  教学目标

  1、进一步理解分数的基本性质;并能初步运用分数的基本性质进行约分。

  2、掌握约分的含义和约分的一般方法,学会约分的书写形式,认识最简分数。

  3、在知识的运用中体验数学价值。

  教学准备:分数卡片图片课件

  一、复习

  1、说一说:分数的基本性质

  2、想一想:学习分数的基本性质有什么作用?

  3、写一写:请你写出和相等的分数

  在学生交流反馈后,引导学生对相等的分数做比较:分子分母都比原来大的,分子分母都比原来小的。

  二、教学例3

  出示例3:你能写出和相等,而分子、分母都比较小的分数吗?

  学生尝试自主思考。

  汇报:你是怎样想的?先在小组里交流。

  教学约分的含义。

  师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。

  教师指出:约分要注意两点,一是约分后得到的分数要与原来的分数相等;二是约分后得到的分数的分子分母都要比原来的分数小。

  教学约分的书写形式

  师:分子分母都要同时除以几呢?

  生:分子分母同时除以2、3或者6。

  方法一:先分别除以12和18的公因数2、再分别除以6和9的.公因数3。

  方法二:分别除以12和18的最大公因数6。

  规范:画斜线的方向和商的书写位置

  提示:熟练以后,约分可以直接写成=

  师:约分到什么时候就不要继续除呢?

  生:除到分子、分母只有公因数1为止。

  教学最简分数。

  像的分子分母只有公因数1,这样的分数叫做最简分数。约分时,通常要约成最简分数。

  三、课堂练习

  同步练习1:说出一个最简分数

  同步练习2:把约成最简分数。

  1、指出下面的哪些分数是最简分数。

  (练一练62页第一题)

  2、分别说出下面各分数的分子分母有没有公因数2、3、5。

  3、分组练习(指名板演)

  练一练第二题

  练习十一第5题

  四、课堂总结

  (略)

  五、课堂作业:

  练习十一第7题

分数的基本性质的教案15

  教学目的:

  1、理解和掌握分数的基本性质。

  2、理解分数的基本性质与商不变规律的关系。

  3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。

  学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

  4、应用分数的基本性质解决简单实际问题。

  5、正确认识、处理变与不变的的辨证关系。

  教学重点:掌握分数的基本性质。

  教学难点:抽象概括分数的基本性质。

  教具学具准备:多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

  教学步骤:

  一、1、复习旧知

  除法与分数之间有什么联系?

  被除数÷除数=被除数

  除数

  1)、你能用分数表示下面各题的商吗?

  1÷2=()3÷6=()5÷10=()4÷8=()

  2)、根据400÷25=16在□里填数:

  (400×4)÷(25×4)=□

  根据360÷90=4在□里填数:

  (360÷□)÷(90÷10)=4

  (2)你是怎样想的?(回忆除法中商不变性质)

  商不变的性质内容是什么?

  3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

  2、激趣引入:和尚分饼

  从前有座山,山上有座庙,庙里有个中年和尚和两个小和尚,他们三个很喜欢吃和尚做的饼。有一天,中年和尚做了三个同样大小的饼,准备分给小和尚们吃。小和尚们迫不及待地要吃饼,第一个小和尚说:“我要一半。”中年和尚二话不说,将一个饼平均分成两半,取其中一半给了第一个小和尚。第二个小和尚说:“我要四分之一。”中年和尚又将第二个饼平均分成四份,取其中的一份给了第二个小和尚。第三个小和尚看着剩下的饼,说:“我要三份。”中年和尚又将最后一个饼平均分成六份,取其中的三份给了第三个小和尚。中年和尚满足地看着三个小和尚吃着饼,大家一起开心地享用了美味的点心。现在,请同学们用一个分数来表示三个和尚分得的饼数。板书:1/2,1/4,3/6。

  你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

  这几个分数真的相等吗?让我们做个实验来证明。

  3、操作感知:

  (1)请同学们拿出三张大小相同的长方形纸条。

  通过实验、观察、分析、讨论

  ①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

  ②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

  ③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

  然后看涂上颜色的部分是不是一样大。这说明了什么?

  引导:聪明的老和尚想到了一个巧妙的方法来满足小和尚们的要求,同时又能够公平地分配。他让每个小和尚都先把自己的食物分成相等的份额,然后再把这些份额集中在一起重新平均分配给每个小和尚。这样,每个小和尚既能保证自己的份额是相等的,又能分享其他小和尚的食物,实现了既满足要求又公平分配的`目的。

  这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

  二、比较归纳揭示规律

  比较这三个分数分子和分母,它们各是按照什么规律变化的?:

  1、说说这三个分数的意义。

  2、总结规律:

  (1)从左往右观察:

  a、观察手中第一、第二张纸条。

  发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

  b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

  板书:1/2=1×3/2×3=3/6

  c、分数的分子和分母同时乘以相同的数,分数的大小不变。

  (2)引导学生观察、讨论:

  从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

  学生边回答边板书:3/6=3÷3/6÷3=1/2

  2/4=2÷2/4÷2=1/2

  并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

  3、抽象概括归纳性质

  (1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

  (2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

  分母不能为0,因此分数的分子和分母不能同时为0;另外,在除法运算中,零不能作为除数,因此分数的分子和分母也不能同时为0。

【分数的基本性质的教案】相关文章:

《分数的基本性质》的教案07-25

分数的基本性质教案08-06

精选分数的基本性质教案三篇08-28

分数的基本性质说课稿12-17

《分数的基本性质》说课稿07-01

分数的基本性质教案汇编8篇08-16

【精华】分数的基本性质教案3篇09-20

《分数的基本性质》教学反思10-13

分数的基本性质教案模板集合5篇11-17