五年级下数学教案

时间:2024-11-09 08:22:47 教案 我要投稿
  • 相关推荐

五年级下数学教案人教版

  作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。教案应该怎么写呢?以下是小编精心整理的五年级下数学教案人教版,希望能够帮助到大家。

五年级下数学教案人教版

五年级下数学教案人教版1

  教学目标

  1。通过小组合作学习,经历设计打电话方案并找出最优方案的过程,体验画图分析、交流讨论的学习方法。

  2。通过这个综合应用,让同学进一步体会数学与生活的密切联系以和优化思想在生活中的应用

  3。通过画图方式发现事物隐含的规律,培养学生的归纳推理能力。

  学情分析

  《打电话》所使用的素材是学生所熟悉的,问题和学生的生活经验密切结合,学生对这一问题的研究很有兴趣。“打电话”这一问题正是为学生提供了可探究的空间,学生尝试寻找“答案”时,不是简单地应用已知的信息,也没有可直接利用的方法、公式。尽管不是所有的学生最终都能出色地完成任务,但是他们都尽自己的思维能力“走”得足够远。很有让学生去研究的价值。

  重点难点

  【教学重点】

  理解打电话的各个方案并从中优化出最好的方案。

  【教学难点】

  能够运用打电话的最优方案解决一些简单的实际问题。

  教学过程

  活动1【导入】一、引入新课(出示半开放性素材)2分钟

  问题:学校刚接到教育局通知,让我们学校马上派15位同学马上赶到二小参加现场科技制作比赛,由付老师负责通知他们,你们帮付老师想想,付老师可以用什么方法通知他们?

  师由这个问题引出最直接、最能保证通知到位的方式:打电话(板书课题)

  (听+想+讲)

  活动2【活动】二:自主合作(学生呈现多个项度+确定项度)(6分钟)

  学生自主学习课本P132-133,并同桌或前后两人交互打电话的方案,时间3分钟

  (看+想+讲+听)

  (师巡视,并对自主学习认真的同学及予表扬)

  自主学习要求:

  a。看课本P132———133,看完以后,同桌或前后两人交流下讨论打电话的方案。

  b。通过自学,看课本中介绍了哪几种打电话的方案。

  c。时间3分钟。

  通过自学,我知道课本中介绍了哪几种打电话的方案?

  (师根据学生回答,整理项度并板书:)

  项度呈现:

  主气泡:打电话

  子气泡:分组通知、逐个通知、每个人不空闲通知

  其中“分组通知”又包括分三组、四组、五组等三个向度。

  3。生在团队长的带领下团队共同确定其中的1个项度进行讨论,团队长并做好组内分工。

  (讲+看+小动)

  活动3【活动】三:合作探究(交互+强化)14分钟

  1.团队长根据自已团队选择的问题带领组员开展4—6人的小组交互,强化学习,并把学习的成果记录在白板上,并作好发言准备。

  (通过小组的共同交互学习,让学生对本节课的知识达到6—8次的强化学习,师在学生合作探究的过程中,及时给予指导和帮助)

  (做+想+讲+听+大动)

  合作探究要求:

  a。团队长根据选择的问题,带领组员开展小组讨论,强化学习,并把团队学习的.成果记录在白板上。

  b。每个团队做好上台展示交流的准备。

  c。时间是7分钟

  2:师巡视:提醒有关的小组做好展示交流的准备。

  活动4【活动】四:展示交流(汇集+强化)

  1.选择四个团队上台展示汇报,涵盖所有项度的知识点。

  (师根据学生的展示汇报情况,给予鼓励和表扬)

  (讲+听+看+做)

  2。教师精讲,师生共同完成2n的推导过程,小结出最优方案。

  (看+讲+做+听+想)

  活动5【练习】三:巩固练习

  ⑴有一棵奇妙的树,原来只有1个树枝,第一年长出1个树枝,第二年每个树,枝分别长出1个新枝,第三年每个树,枝又都分别长出1个新枝,照这样计

  算,第五年这棵树上一共有几个树枝?

  ⑵小鸭子想开一个游泳会,如果通知一只鸭子要3分钟,你能帮它想一想,有什么办法在最短的时间内通知到30只鸭子来参加游泳会吗

  活动6【活动】四:课堂小结

  这节课你们学会了什么?把你的收获告诉大家?

  (看+讲+想)

五年级下数学教案人教版2

  教学目标

  1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。

  2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。

  学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。

  重点难点

  教学重点:

  发现解决这类问题的最佳策略。

  教学难点:

  理解并认可最佳策略的有效性。

  教学过程

  活动1【导入】创设情境、激发兴趣

  1、看视频,谈感受。

  播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?

  2、发现次品。

  生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。

  今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)

  活动2【讲授】初步感知、寻找方法

  1、出示例题。

  有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?

  数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。

  2、天平的原理。

  如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。

  3、华罗庚的数学思想。

  让学生自由猜测称的次数。

  师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!

  活动3【活动】自主探究、方法多样

  1.研究2瓶

  师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)

  2.讨论3瓶的问题

  如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)

  注重天平一共有3个空间可以利用,这样节省次数。 生将探究结果填入导学案中。

  3.研究4-8瓶的问题

  如果利用天平来测量,至少要称2次才能保证找到次品的`可以是几瓶?

  学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。

  课件出示小组活动要求。(1)把待测物品分成了几份?每份几个?(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?

  4.重点汇报8瓶的设计方案。

  (1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?

  (2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。

  (3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?

  (4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。

  5.研究9瓶

  学生根据总结的方法直接说出次数,小组验证。

  活动4【练习】拓展提高,优化方案

  1.运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?

  2.举一反三: 从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。

  3.发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?

五年级下数学教案人教版3

  教学目标:

  1、通过学生观察、操作等活动认识长方体,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,理解它们之间的关系。

  2、学生在生活中进一步积累探索经验,增强空间观念,发展数学思维。

  3、学生体会立体图形学习与实际生活的联系,感受其价值,增强数学的兴趣和学好数学的自信心。

  教学重难点:

  重点:探索长方体的特征。

  难点:理解长方体面、棱、顶点之间的关系,建立空间想象。

  教学准备:

  每生准备一个长方体,长方体框架;师准备教学道具和课件。

  教学过程:

  一、导入

  同学们,我们已经学过很多图形了,大家回想一下我们都学过哪些?现在老师在黑板上画出两个最简单的图形,请你们快速说出它们的名字。

  (师在黑板上画出一个点,一条直线)

  生:点、线

  师:我的这个点和线都画在一个什么上?

  生:黑板、面

  师:对,都画在一个面上。现在请你们拿出身边的长方体,找一找长方体中的点、线、面。

  师生摸一摸,指一指,说一说。

  二、新授

  师:长方体中的线有一个固定的名字叫做“棱”,长方体中的点也有一个固定的名字叫做“顶点”。

  师:我们现在初步了解了长方体的面、棱、顶点。如果大家想更多的了解长方体,你能提出哪些问题呢?

  生:长方体有几个面,几条棱,几个顶点……

  师:大家提出的既有关于面、棱、顶点数量的问题,又有关于它们之间关系的问题。下面就请大家小组合作学习,解决课件中给出的这些问题。

  小组合作学习,完成以下问题:

  面1、长方体有几个面?

  2、每个面是什么形状?

  3、哪些面是完全相同的?

  棱1、长方体有几条棱?

  2、哪些棱长度相等?

  顶点1、长方体有几个顶点?

  你还有什么新的发现?棱是怎么形成的?顶点是怎么形成的?

  师:我们先来解决一个最简单的问题,长方体有几个顶点?

  生:8个

  师:怎样有序地数?

  生:可以先依次数上面的四个,再依次数下面的四个。

  师:长方体有几个面呢?

  生:6个

  师:谁能有次序地数出这些面?

  师:谁能用具体的方位名词有次序地数出来?

  师:长方体有6个面,依次是前面、后面、左面、右面、上面、下面。

  师:还可以怎么数?

  师:我们在第一单元学习了观察物体,现在试着从一个角度观察我手中的长方体,你最多能看到几个面?

  生:3个

  师:这三个面的对面都看不到,所以用3乘2就是总数。用这样的方法也能数出长方体的面数。

  师:每个面是什么形状?

  生:长方形,有的长方体中也有正方形。

  师:长方体的每个面都是长方形,特殊情况下有两个相对的面是正方形。

  师:长方形哪些面是完全相同的?

  生:前面和后面,左面和右面,上面和下面

  师:你们说的前与后,左与右,上与下都是相对的关系,所以简单说就是相对的面完全相同。你们是怎么得出这个结论的?

  生:我们是看出来的。

  师:生活中我们经常有看错人的时候,所以用眼睛看出来的不一定正确,你们有什么方法能证明自己的结论是正确的吗?

  生:可以把长方体拆开,拿相对的面对比,如果完全重合,就说明相对的面完全相同。

  师:你的方法真棒,那我们就一起来操作和证明一下。

  师:相对的两个面放在一起完全重合了,说明大家的结论是正确的。

  师:我们来理解一下什么是完全相同?完全相同的两个面,它们的面积相等,周长相等,长相等,宽也相等。

  师:关于长方体的棱,你们知道有几条吗?

  生:12条

  师:谁能有次序地、不重不漏地数出来?

  请学生来数

  师:刚刚那位同学的数法我再来展示一下,同学们仔细观察,他是分成几组来数的?每组有几条?

  生:三组,每组有4条。

  师:为什么要这样数?

  生:因为每一组中的棱长度是相等的。

  师:哪些位置的棱长度相等呢?

  生:位置相对的棱

  师:我们用尺子量一量是否相等。

  师:确实,相对的四条棱长度相等。

  师展示长方体框架:假如这个框架中缺少了一条棱,你能想象出缺的这条棱的样子吗?为什么?

  生:因为相对的棱长度相等,可以通过相对的棱想象缺的那条棱的样子。

  师:如果在一组相对的棱中去掉三根,剩一根,你能想象出去完整的长方体的样子吗?为什么?

  生:能,可以通过剩下的那根,想象出跟它相对的`其他三条棱的样子。

  师:按这样的道理,我们在每一组棱中都去掉三根,依然可以想象出完整的长方体的样子。我来试试去掉这些棱后,会是什么样子。

  生:只剩下三根棱。

  师:这三根棱有什么特殊?

  生:它们相交于一个顶点。

  师:对。这是三条非常特殊的棱,我们把它们分别称作长方体的“长”“宽”“高”。也就是说相交于一个顶点的三条棱分别叫做长方体的“长”“宽”“高”。在一个长方体中,我们通常把竖着的这条棱叫做“高”,正对着我们的棱叫做“长”,“长”旁边的那条是“宽”。大家来指一指我手中的这个长方体的长、宽、高。

  拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,体会同一个长方体因摆放位置不同而引起的长宽高的变化。

  师:根据相对的棱相等,所以“长”对面的棱也是“长”,“宽”对面的棱也是“宽”,“高”对面的棱也是“高”,由此可知,长方体有4条长,4条宽,4条高。共计12条。

  师:如果让大家利用小木棒来制作一个长方体框架,思考一下需要几组木棒,共几根?在下面给出的木棒中你可以如何搭配来组建长方体,它们的长宽高分别是多少?

  出示例题:

  四根8厘米,八根3厘米,四根6厘米,两根5厘米。

  生1:长8,宽3,高6

  生2:长8,宽3,高3

  生3:长6,宽3,高3

  师:生2和生3搭建的长方体都是有两个相对的面是正方形的特殊长方体,想象一下,把长缩短到3厘米,这个长方体会变成什么样子?

  生:变成了正方体

  师:对,变成了长、宽、高都是3厘米的正方体,由此我们可以得出这样的结论:长、宽、高都相等的长方体是正方体,正方体是一种特殊的长方体

  师:关于面、棱、顶点,它们之间有什么关系呢?棱和面有什么关系?棱和顶点有什么关系?

  生:两个面相交的位置是棱,两条棱相交的位置是顶点。

  巩固练习

  书上例题1、2

  小结

  作业布置

  练习册《长方体的认识》

五年级下数学教案人教版4

  教学目标

  1、结合具体情境,探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;

  3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系。

  养成教育训练点:

  教学重点、难点

  1、结合具体情境,探索并理解分数乘分数的意义;

  2、探索并掌握分数乘分数的计算方法,并能正确计算;

  教学准备:

  1、每人准备一条约10厘米长的`纸条;

  2、每人准备5张长方形的纸。

  教学过程:

  一、探索分数乘分数的意义和计算方法

  1、先让学生读一读教科书第7页的一段话。再让学生拿出课前准备的一张纸条,按照例题所述剪一剪。

  剪好后,师问:怎样列式求“剩下的部分占这张纸条的几分之几?”

  并根据剪的结果写出得数。

  1/2×1/2=1/41/4×1/2=1/8

  学生列出算式后,师问:为什么用乘法计算?

  引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。

  折一折,涂一涂3/4×1/4-=?

  让学生拿出课前准备好的一张长方形纸,按照教科书的要求折一折,涂一涂。

  讨论:

  (1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?

  (2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?

  做一做:按照上面的方法折一折,想一想,并算出结果。

  2/3×1/55/6×1/3

  说一说:你能总结分数与分数相乘的计算方法吗?

  小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。

  想一想:此法与分数与整数相乘的方法有矛盾吗?

  试一试:

  1/4×2/33/52/97/8×5/14

  强调:能约分的要先约分。

  二、课堂练习

  1、计算练习。

  教科书第x页“练一练”第2题。

  学生计算后观察:分数相乘的积一定小于每一个乘数吗?

  2、解决问题。

  (1)教科书第x页“练一练”第3、4、5、6、7题。

  学生完成后,说说解题思路。

  (2)教科书第x页数学故事“唐僧分瓜”。

  板书设计:

  分数乘分数的运算法则:分子相乘,分母相乘,能约分的要约分。

五年级下数学教案人教版5

  教学内容:

  五年级下册教科书第65—66页。

  教学目标:

  1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。

  2.在探究过程中,培养学生观察、比较、归纳等探究的能力。

  3.体会知识来源于实际生活的需要,激发学习数学的积极性。

  教学重点:

  经历探究过程,理解和掌握分数与除法的关系。

  教学难点:

  通过操作,让学生理解一个分数可以表示的两种意义。

  教材分析:

  《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。

  本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。

  教具学具:

  课件,模型。

  教学设计

  一、导入

  师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?

  生:月饼。

  师:你们的课外知识真丰富,你们喜欢吃月饼吗?

  生:喜欢。

  师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?

  生:2块,6÷3=2(块)。(板书)

  师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?

  生:0.5块,1÷2=0.5(块)。(板书)

  师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?

  师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?

  生:七分之五。

  师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?

  生:可以用分数表示。

  师:在表示整数除法的商时,用谁作分母?用谁做分子?

  生:用被除数作分子,除数作分母。

  师:那么分数与除法有什么样的关系呢?谁能用语言概括下?

  生:被除数除以除数等于除数分之被除数。

  师:你表达得这么清晰流畅,了不起!

  师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?

  生:a÷b= a/b(b≠0)(板书)

  师:这个关系式里每个数的范围要注意什么?

  生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。

  师:想一想分数与除法有哪些联系和区别?

  教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。

  师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的.数,也可以是把“3”平均分成4份,表示这样1份的数。)

  二、巩固练习

  师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?

  1.1.用分数表示下面各式的商。

  (1)3÷2 =()

  (2)2÷9 =()

  (3)7÷8 =()

  (4)5÷12 =()

  (5)31÷5 =()

  (6)m÷n =()n≠0

  2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖

  的( )是相等的

  三、课堂小结

  说说你的收获是什么?重点说说分数与除法的关系。

  结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!

  四、作业布置

  练习十二第1,3题。

  板书设计

  分数与除法

  被除数÷除数=被除数/除数

  a÷b= a/b(b≠0)

  教学反思

  这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。

五年级下数学教案人教版6

  1、学习目标

  1.经历探索3的倍数的过程,理解3的倍数的特征。

  2.能判断一个数是不是3的倍数。

  3.在探究过程中发展概括和归纳能力。

  2、学情分析

  学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。

  3、重点难点

  学习重点:经历探索并掌握3的倍数特征的过程。

  学习难点:发现概括出3的倍数特征。

  4、教学过程

  4.1.2教学活动

  活动1【导入】(一)游戏复习、激发兴趣

  游戏复习、设疑导入

  (一)游戏复习、激发兴趣

  同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?

  (课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)

  小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的`个位就行了。(课件圈出个位)

  【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】

  第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)

  活动2【活动】二、自主探究,感悟规律

  1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。

  2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。

  3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?

  4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?

  把你的发现与同桌交流一下。

  活动3【讲授】学生摸索,教师讲解归纳

  (三)举例验证规律

  师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?

  小组合作学习二:验证、归纳3的倍数的特征

  举例

  各位上的数的和

  是不是3的倍数

  验证摆出的数

  是不是3的倍数

  两位数:

  48

  4+8=12

  √

  48÷3=16

  √

  37

  3+7=10

  ×

  37÷3 有余数

  ×

  三位数:

  四位数:

  2、小组再次讨论总结。

  3的倍数特征:

  (四)、总结规律

  下面小组的验证是否正确?

  看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)

  【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。

  【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】

  活动4【练习】三、闯关比赛:

  闯关比赛:

  3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?

  第一关:下面的数哪些是3的倍数,手势判断。

  92 654 7203

  71 164 20xx

  老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)

  【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】

  第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?

  老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)

  【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】

  活动5【测试】师生闯关

  第三关:师生闯关:

  同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?

  请看,老师取走一个数,(9)这个9位数还是3的倍数吗?

  再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?

  猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?

  你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)

  你能快速发现下面这个数是不是3的倍数?想好就起立。98763963

  【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】

  第四关:猜猜中奖学号

  到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。

  【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】

  活动6【作业】延伸和总结

  四、全课小结:

  1、今天你学会了什么?通过小组合作学习你有什么收获?

  2、我们是通过什么方法得出3的倍数的特征?

  【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】

  五、作业(课后延伸)

  课后可以运用今天所学的方法去探索研究9的倍数的特征。

  【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】

五年级下数学教案人教版7

  教学目标:

  1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

  2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

  3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

  教学重点:

  探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

  教学难点:

  自主探索,归纳概括分数的基本性质。

  教具学具准备:

  多媒体课件,正方形纸,彩笔。

  教学设计:

  一、创设情境,导入新课

  1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

  2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

  3、学生初步感知了什么变了而什么却没有变的概念。

  4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

  二、探究新知

  (一)导入

  1、师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

  被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

  2、同学们说说这几道相等吗?(指名回答)。

  3、教师引导说出商不变的性质,课件出示商不变的'性质的定义。

  设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

  (二)、教学新知

  1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

  2、学生操作,教师巡视并特别提醒学生注意“平均分”。

  3、展示学生的作业。

  4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

  5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

  6、引导学生观察:

  观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

  教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

  设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

  7、课件出示:(通知互相讨论)

  (1)相比较,看看分子分母有什么变化?

  (2)在这个变化中,你们发现了什么规律。

  8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

  9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

  10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

  师:分数的基本性质和商不变性质的规律是一致的。

  三、巩固强化,拓展应用

  (1)课件出示:(集体回答)。

  (2)指出下列分数是否相等。(指名回答)。

  (3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

  (4)课件出示小故事。

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

  设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

  四、回顾总结,梳理新知

  同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

  教学反思:

  1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

  2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

  3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下数学教案人教版8

  教学目标

  1、知识目标:通过教学,使学生初步理解同分母分数加减的算理,掌握同分母分数加减法的计算法则并能正确熟练地计算。

  2、能力目标:在具体情景中对整数加减法的意义进行迁移,进一步理解分数加减法的意义,提高学生归纳、概括问题的能力。

  3、情感目标:通过学生的自主探索和合作交流,培养合作意识,让学生体验成功。

  4、重点能正确进行同分母分数加、法计算。

  5、难点能熟练掌握并养成最后计算结果能约分的'要约分的习惯。

  教学过程

  创境激疑一、复习铺垫,引出新知:

  1、师:同学们,前面我们刚刚学过有关分数的知识,你能举了分数的例子吗?(学生举例。)

  师板书两个分数:看着这两个分数,你能想到哪些有关的分数知识?(学生回答。)

  2、师:同学们复习的很全面,咱们再具体做个练习好吗?

  合作探究二、新课讲授,总结规律:

  1、学习例题1:

  师:刚才的复习告诉我,大家对分数知识掌握的很好。还记得在三年级的时候,我们对分数的计算已经有了初步的了解,今天我们继续学习“同分母的分数加减法”。教师板书课题。

  A、创设情境,出示题目:

  B、出示例题1

  师:请说出图上有什么信息?

  (1)学生分析读题,列式,师:为什么用加法计算?小数加法和整数加法的含义

  (2)你能大胆的猜测一下计算结果吗?学生说出得数。

  请用自己喜欢的方法来证明得数是正确的。同桌或小组内的同学交流自己的方法。

  (3)方法展示:

  图示法、线段法、数分数单位法。

  2、学习例题2

  师:刚刚学习了同分母的加法,接下来我们继续研究同分母的减法。

  A、教师板书两个分数、

  (1)师:你能用这两个分数编一道减法应用题吗?学生思考并回答。

  (2)师:老师也用这两个分数编了一道减法应用题,想看吗?

  B、出示例题2:为什么用减法呢?小数减法的含义和整数减法的含义。

  请仿照例题1的计算方法计算得数。

  出示例3、电视台少儿频道各类节目播出时间分配情况如下:

  节目类型动画类游戏类教育类科普类其它。

  时间分配

  (1)前三类节目共占每天节目播出时间的几分之几?

  (2)其它节目占每天播出时间的几分之几?

  学生自己独立解答。

  拓展应用做一做1题

  总结这节课我们主要学习了什么内容?你能用一句话来概括他的计算法则吗?

五年级下数学教案人教版9

  教学目标

  1、通过教学,使学生初步理解同分母分数加法的算理。

  2、掌握同分母分数加法的计算法则并能正确熟练地计算。

  学情分析

  学生在掌握整数加法的基础上,探索同分母分数加法的过程,理解同分母分数的计算法则。

  重点难点

  1、分数加法的意义。

  2、能正确进行同分母分数加法的计算。

  教学过程

  活动1【导入】创设情境

  1、(录音内容)我是妮妮,今天想请哥哥、姐姐帮我一个忙。我妈妈烙了一张饼,爸爸把它平均分成八份,爸爸吃了八分之三张饼,妈妈吃了八分之一张饼,我想知道爸爸、妈妈一共吃了多少张饼呢?谁要是能帮我,就奖给大家一个赞,我先谢谢哥哥、姐姐了。

  2、师:同学们,能帮助小妹妹吗?那怎么列式(板书式子),今天就让我们共同学习同分母分数加法。

  活动2【讲授】学习目标

  1、理解、掌握同分母分数加法的计算法则。

  2、能正确进行同分母分数加法的计算。

  活动3【活动】提示预习内容,学生自主学习

  1、自主探究、小组讨论:

  (一)师:俗话说:“三个臭皮匠,顶个诸葛亮”,四个人的智慧,一定是很大的,下面就让我们小组合作来探究同分母分数加法。

  (二)学生先自主学习,再小组讨论

  (三)学生讨论,师个别指导

  (讨论中鼓励学生大胆提出个人见解,提示可以借助辅助工具来解题。)

  2、汇报交流

  生1:同学们,下面由我来代表我们组跟大家分享我们组的做法,大家请看,我是把这张长方形纸当成妈妈烙的饼,我也把它平均分成8份,爸爸吃了3份,我把它折回去,妈妈吃了1份,我也把它折回去,还剩4份,吃了也就是4份,占整张饼的八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生:老师,我想对赵红俐的讲解做下点评,你的想法真奇特,能想到加法的逆运算减法来解决问题,你真棒,希望在以后的学习中你能继续发挥你的聪明才智。

  生2:大家请看,我们组是用折纸法,我把这张圆看作是妈妈烙的饼,我把它对折三次,平均分成8块,这3块是爸爸吃的,也就是八分之三,这1块是妈妈吃的也就是八分之一,一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生3:我来为大家讲解说意义的方法,大家请看,我是把这张饼看作单位“1”,把它平均分成8块,爸爸吃了3块,相当于吃了这张饼的八分之三,妈妈吃了1块,相当于吃了这张饼的八分之一,两个人共吃了4块,也就是这张饼的八分之四。结果能约分的要约成最简分数,也就是二分之一。

  生4:我们组是用画线段的方法来解答的,我是把一条8厘米长的线段看成是妈妈烙的饼,把它平均分成8份,这3份是爸爸吃的,用来表示八分之三,这1份是妈妈吃的,用来表示八分之一,一共吃了4份,也就是八分之四,请大家注意结果能约分的要约成最简分数,也就是二分之一。

  生5:我们组是用画图法来解决的`,我是把一张正方形纸看作是妈妈烙的那张饼,把它平均分成8块,爸爸吃的3块,我是用蓝色表示的,妈妈吃的1块,我是用红色表示的,爸爸、妈妈一共吃了4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生6:我们组是用切割法来解决的,请八位同学来帮我完成,请大家手拉手紧密的围成一个圆,我把这个圆平均切成8块,这3块是爸爸吃的,这1块是妈妈吃的,一共是4块,也就是八分之四,结果能约分的要约成最简分数,也就是二分之一。

  生:我想对陶梦如的做法做一下点评,你的想法很新颖,但在日常的应用中不实用,我建议你可以用小棒来代替人。

  生:我觉得小棒易丢,也不实用,可以用手指来代替小棒,因为手指不会离开我们的身体。

  生:我觉得手指算小数可以,假如就没法算了,我觉得还是画图比较好。

  生7:大家请看表示3个,表示1个,它们两的分数单位都是,所以分母不变,只把分子相加,结果能约分的要约成最简分数,也就是二分之一。

  生:刚才大家用这么多方法来探究同分母分数加法,那到底该怎样计算同分母分数呢?

  生:同分母分数相加,分母不变,只把分子相加,计算的结果,能约分的要约成最简分数。

  师:同桌互记计算法则。

  活动4【练习】能力提升

  师:在阿拉伯流传这样一句话:“无论你有多少知识,假如不用便是一无所知”,谁能结合本节课的内容,出几道题考考大家?

五年级下数学教案人教版10

  教学内容:

  人教版小学数学五年级下册第二单元第5第6页《因数与倍数》

  教材分析:

  整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。

  学情分析:

  因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的.观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。

  教学目标:

  1.学生掌握找一个数的因数,倍数的方法。

  2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。

  3.培养学生的观察能力。

  教学重点:

  掌握找一个数的因数和倍数的方法。

  教学难点:

  能熟练地找一个数的因数和倍数。

  教学准备:

  多媒体课件

  教学过程:

  一、自主探索

  1、出示书上主题图,学生列出乘法算式

  2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)

  2、出示书中主题图,学生列出乘法算式。

  3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?

  学生口答,巩固因数和倍数的含义?

  3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?

  学生发表自己的见解。

  总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。

  4、你还能找出12的其他因数吗?

  学生独立完成,集体订正。

  总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。

  5.小结引出课题。

  师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)

  6.例题学习

  出示例题:18的因数有哪几个?

  学生独立试做,集体订正

  (1)想谁和谁相乘是18?

  18=1×1818=2×918=3×6

  所以18的因数是1,2,3,6,9,18。

  (2)列出被除数是18的除法算式

  18÷1=1818÷2=918÷3=6

  18÷6=318÷9=218÷18=1

  分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个

  7.出示做一做:

  30的因数有哪些?36呢?学生独立练习,并口述方法,

  由此你发现了什么?一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。

  8.小结:用字母表示数的知识表述因数和倍数的关系

  M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。

  A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。

  二、巩固练习

  1.(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?

  4和2426和1375和2581和9

  2.课本练习

  三、总结反思:

  由学生回忆本节课所学内容。

五年级下数学教案人教版11

  一、教材内容:

  人教版小学数学五年级下册44页

  二、学情分析

  五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。

  三、教学目标

  1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

  2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。

  3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。

  教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。

  教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。

  四、 教学准备

  魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡

  五、教学过程

  一、复习引入

  (一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?

  学生:有8个顶点、12条长度相等的棱、6个大小相等的面。

  教师随机板书正方体的特征。

  【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】

  (二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?

  生:图①2×2×2=8(块)

  图②3×3×3=27(块)

  图③4×4×4=64(块)

  师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?

  生:不是,有的会被涂上颜色,有的不会被涂上颜色。

  师:涂色的面数有几种情况?

  学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。

  教师随机板书:3面 两面 一面 没有涂色

  师:今天我们就一起来探究正方体表面涂色的问题——探究图形

  教师板书课题。

  二、探究新知

  (一)探究三面涂色的问题

  师:三面涂色的小正方体分别有多少块呢?

  生观察回答:图①有8块、图②有8块、图③有8块。

  师:怎么都是8块?分别在哪里?

  生:都在大正方体的8个顶点上。

  师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?

  生:也是8块。

  师:这跟什么有关系?

  生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。

  教师随机板书:顶点

  (二)探究两面涂色的问题

  师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。

  小组合作提示:

  1、四人合作,利用学具探究两面涂色的小正方体有多少块?

  2、试着将发现的结果用列式的方法表示在小组探究卡的表格中

  小组探究

  小组汇报

  生:一面有4块,6面一共有12块。

  师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的话,用这种方法还方便吗?还有其他的方法吗?

  生:一条棱上去掉三面涂色的2块剩下的`一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.

  师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?

  生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.

  师:那棱长是5块、6块的呢?怎样列式计算?

  生:(5-2)×12=36块 (6-2)×12=48块

  师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?

  生:(n-2)×12

  师板书:在棱上 (n-2)×12

  (三)探究一面涂色的问题

  师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。

  小组合作探究

  小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)

  生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。

  师:你是怎么知道一面有1块、4块一面涂色的呢?

  生:数的

  师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?

  生:有局限性

  师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?

  生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。

  生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。

  师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?

  生:(5-2)×(5-2)×6=54块

  (6-2)×(6-2)×6=96块

  师:用字母怎么表示?

  生:(n-2)×(n-2)×6=(n-2)2×6

  (四)探究没有涂色的问题

  师:没有涂色的小正方体有多少块呢?怎么计算?

  生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。

  师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?

  生:在里面

  师:有什么办法知道呢?

  生:拆开看一看

  师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数

  师:现在你知道有多少块没有涂色了吗?

  生:②号图形有一块没有涂色

  ③号图形有8块没有涂色的

  师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。

  组织学生观看动画过程。

  生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。

  生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。

  师:真棒!你能试试棱长是5、6块的吗?

  生:(5-2)×(5-2)×(5-2)=27块

  (6-2)×(6-2)×(6-2)=64块

  师:用字母怎么表示?

  生:(n-2)×(n-2)×(n-2)=(n-2)3

  三、知识应用

  出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?

  学生计算汇报

  四、课堂小结

  通过这节课的探究,你能说说你用什么方法学会了本节课的知识?

  五、版书设计

  探索图形

  顶点上 棱上 面上 中心

  正方体的特征:8个顶点 12条棱 6个面

  三面 两面 一面 没有涂色

  8 (n-2)×12 (n-2)2×6 (n-2)3

五年级下数学教案人教版12

  一、教材分析

  1、内容:九年义务教育六年制小学五年级人教版《数学》下册第五单元《图形的运动(三)》P83页《旋转三要素》。本课计划1个课时。

  2、教材的编写意图:在二年级学生已经初步认识了图形的旋转和平移,以后上初中也将进一步学习图形的旋转和平移,因此,本课起着承上启下的衔接作用。

  教学目标:

  (一)知识与技能

  使学生掌握旋转的方向,明确旋转的含义和旋转的三要素,会用自己的语言简单地描述线段的旋转。

  (二)过程与方法

  通过操作、观察、讨论等活动,提高学生的空间想象能力和综合运用知识的能力。

  (三)情感态度和价值观

  在观察、讨论中,发展空间观念,进一步培养学生对数学问题的敏锐眼光。

  教学重难点:

  教学重点:明确旋转的含义和旋转的三要素。

  教学难点:体会旋转的含义,理解旋转的三要素。

  二、教法

  新课程标准要求:教师是学习的组织者、引导者、合作者,根据教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以实验发现法为主,直观演示法、设疑诱导法为辅的教学手段。教学中,教师精心创设问题情景,诱导学生思考、操作,教师适时地演示,并运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

  三、学法

  根据学法指导自主性和差异性原则,让学生在“观察——操作——概括——检验——应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

  教学准备:幻灯片、课件。

  教学过程:

  一、情境导入

  课件播放花样滑冰选手金妍儿的旋转舞蹈视频。

  教师:你看到了什么?

  学生:她在不停地旋转。

  教师:今天我们就来认识旋转。

  (板书课题:旋转)

  【设计意图】 这样的设计,极大的吸引了学生的注意力,激发了学生的好奇心和求知欲,同时很自然的就将学生带入新课中。

  二、、探究新知

  1、复习简单的旋转现象。

  A、在二年级的时候我们已经初步认识了生活中的旋转现象,你还记得旋转的.含义是什么吗?

  学生思考,教师指名回答。

  B、大家能举几个例子吗?

  教师指名回答。

  C、老师身上有样东西在运动时也在旋转,你能找出来吗?

  学生认真找。找后指名回答。

  2、讲解例1,明确确旋转三要素。

  出示时钟。

  师:同学们已经初步认识了生活中的旋转现象,那我们这节课就借住时钟进一步认认识旋转。

  (1)认识旋转要素——旋转方向

  教师:同学们都应该观察时钟的指针的旋转动运,那你们知道它是按什么方向运动的吗?

  学生小组交流,可得出:指针是按顺时针方向方向旋转的。

  教师:不在人为的干涉下,指针会逆时针运动吗?(不会)

  教师:时钟中的时针只会顺时针运动,这就是指针的旋转方向。

  (板书:旋转方向)

  教师组织学开展“听口令做动作”的活动;让学生先平伸右臂,用动作表示顺时针旋转和逆时针旋转,再平伸左臂做一次,亲身体验顺时针运动、逆时针旋转。

  (2)认识旋转要素——旋转中心

  教师指着时钟的中心。

  教师:同学们知道这是什么吗?这个位于时钟的中心,时钟和分钟都沿着它转,这就是时钟的旋转中心。

  (板书:旋转中心)

  (3)认识旋转要素——旋转角度

  课件动态出示甲时钟指针从“12”到“1”,乙时钟指针从“12”到“3”。

  引导思考:

  A、注意观察,甲、乙两个时钟的指针分别是怎么旋转的?

  指名说一说指针的旋转过程。

  B、两个钟面上都是指针在旋转,在旋转过程中有什么不同的地方吗?

  教师:学习了上面的内容,同学们能描述指针从“12”到“1”的旋转吗?

  学生思考得出:当指针从“12”到“1”时,指针顺时针绕着中心转过了30°。

  教师:你怎么知道旋转了30°呢?

  组织学生在小组中讨论交流,使学生明确:指针绕点O旋转一周共360°,一共12个大格,从“12”到“1”是1个大格,即旋转了:360°÷ 12 = 30°。

  教师小结:在描述物体的旋转时,要注意旋转三要素:旋转方向、旋转中心、旋转角度。

  (板书:旋转方向、旋转中心、旋转角度)

  【设计意图】从简单的实例入手,在看似简单的变化中请学生比较不同之处,形象地感知、体会旋转的三要素。

  三、巩固练习

  1、完成课本例题。

  2、完成教材第83页“做一做”。

  (1)先出示左边的图,再出示右边的图。

  教师:左侧有车通过,左侧车杆怎么变化呢?

  预设:左侧有车通过,车杆绕点O顺时针旋转90°。

  教师:汽车已经通过,车杆又回归原位,车杆又是怎么变化的呢?

  (2)请一个学生来当车闸,演示右侧有车通过,请大家说一说车杆是怎么变化的。

  (3)引导学生仔细观察左、右侧通车时旋转方向、旋转中心、旋转角度的相同和不同。

  指名回答,集体订正

  3、课件动态出示时钟,完成练习。

  4、指导学生完成教材第85页第1题、第2题、第3题。

  5、欣赏生活中的旋转现象图片及旋转大楼。

  【设计意图】有了前面初步感知旋转的三要素,在这一环节中,充分给学生空间,让学生在讨论中,自己不断完善对指针旋转的描述,加深对旋转的理解。

  四、课后小结

  通过本节课的学习,你有什么收获?

  【设计意图】让学生归纳小结本节课所学知识,进一步培养学生的概括能力。

五年级下数学教案人教版13

  教学内容:2,5倍数的特征

  教学目标:

  1、使学生经历探索2,5的倍数特征的过程,理解其特征,能判断一个数是不是2或5的倍数。知道奇数、偶数的含义,能判断一个数是奇数还是偶数。

  2、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。在观察、猜测和讨论过程中,提高探究问题的能力。

  3、有克服困难和解决问题的体验,对自己得到的结果正确与否有一定的把握和信心。经历观察、归纳、类比等学习数学的活动,使学生感受数学思考过程的合理性。

  教学重点:理解2,5的倍数的特征

  教学难点:对有关信息如何进行收集、分析、归纳发现数的特征

  一、提示课题

  这节课,老师要带领全体同学进行探索活动,探索的知识是“2,5的倍数的特征”。(板书课题)

  二、探索活动

  1、2,5的倍数的特征

  ⑴、给出几个式子,找找谁是谁的倍数,观察发现是2或者5的倍数,引出今天的课题2,5的倍数的特征。

  8÷4=2

  6÷3=2

  10÷5=2

  15÷3=5

  20÷4=5

  8,6,10都是2的倍数。10,15,20都是5的倍数

  那我们今天来学习2,5的倍数的特征

  ⑵、游戏

  班上20位同学,老师按照每组5位同学,按顺序排列了序号为1-20号。

  1.请序号为2的倍数的同学站起来

  2.请序号为5的倍数的同学举起手

  3.请序号既是2又是5的倍数的同学举起你们的双手

  1.2,4,6,8,10,12,14,16,18,20

  2.5,10,15,20

  3.10,20

  学生总结归纳出2,5的倍数的特征

  学生完成后,展示结果:

  2的倍数的特征:个位上是0、2、4、6、8的数是2的倍数。

  在学生理解2的倍数的特征的基础上,师说明偶数和奇数的含义,并板书:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

  5的倍数的.特征:个位上的数字是0或5的数,都是5的倍数。

  ⑵、实践检验

  ①出示1~100的数字表格

  ②在表中找出2的倍数,并做上记号。

  ③在表格中找出5的倍数,师做记号。

  ④既是2的倍数又是5的倍数,做记号。

  ⑶尝试判断

  出示数字:70、90、85、105、120、92、88、104、106

  ①判断哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数。

  ②学生运用乘法或除法计算,来验证判断结果。

  (4)归纳总结,并板书。

  三、巩固练习

  1、找出2、5的倍数。

  1 21 30 35 39 2 40 12 15 60 18 72 85 90

  (1)找出2的倍数、5的倍数。

  (2)哪些数既是2的倍数又是5的倍数?

  2、火眼金睛辨对错:

  (1)偶数都是2的倍数。 ()

  (2)210既是2的倍数又是5的倍数。 ()

  (3)两个奇数的和不一定是偶数。 ()

  3、猜数。

  从左边起:

  第一个数字最大的一位偶数

  第二个数字5的倍数

  第三个数字最小的奇数

  第四个数字不告诉你

  不过这个四位数既是2的倍数又是5的倍数

  4、任选两个数字组成符合要求的数:6、0、9、5

  (1)奇数

  (2)2的倍数

  (3)5的倍数

  (4)既是2的倍数又是5的倍数

  5、□里能填几?

  (1)2的倍数:8□

  (2)5的倍数:7□ □□

  四、课堂小结:

  2和5的倍数的特征是我们已经研究过了,3的倍数会有什么特征呢,我们下节课研究。

  五、板书设计:

  2,5的倍数的特征

  5的倍数的特征:个位上的数字是0或5的数

  2的倍数特征:个位上是0、2、4、6、8的数

  是2的倍数的数叫偶数,不是2的倍数的数叫奇数。

五年级下数学教案人教版14

  设计说明

  本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

  1、把新知融入到有趣的情境中,激发学生的学习兴趣。

  在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

  2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

  在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的`多样化。

  设计意图:

  在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

  课前准备

  教师准备PPT课件长方形纸

  教学过程

  (1)复习巩固,情境导入,激发兴趣

  1、求下面每组数的公因数。

  42和50 15和5 8和21 18和12

  2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

  (2)认识约分

  1、尝试“变分数”。

  课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

  让学生了解“变化”的要求:

  ①这个分数要与的大小相等。

  ②这个分数的分子、分母要比的分子、分母小。

  2、了解约分的概念。

  ①所变出的分数与原分数有什么关系?

  ②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  ③请学生说一说所变的分数是怎样得来的。

  观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

  3、认识最简分数。

  ①约分后的分子、分母能否再变小了?为什么?

  ②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

  4、说出几个最简分数,强化最简分数的概念。

  (3)合作交流,总结方法

  1、讨论:你能根据我们化简的过程找到约分的方法吗?

  2、小结。

  教师板书约分时一般采用的两种方法:

  ①逐步约分法。

  如约分时,依次用12,18的公因数2和3去除,最后约分成。

  ②一次约分法。

  如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

  3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

【五年级下数学教案】相关文章:

五年级教案数学教案12-27

小学数学教案五年级11-07

五年级数学教案05-20

五年级下册数学教案10-19

五年级上册数学教案05-24

小学五年级数学教案08-27

五年级数学教案(15篇)12-10

五年级数学教案分数与除法04-08

五年级数学教案:探索规律06-05