一元一次方程教案

时间:2024-07-14 10:00:17 教案 我要投稿

一元一次方程教案

  作为一名老师,通常需要准备好一份教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写呢?以下是小编精心整理的一元一次方程教案,希望对大家有所帮助。

一元一次方程教案

一元一次方程教案1

  教材分析

  方程是应用广泛的数学工具,是代数学的核心内容,在义务教育阶段的数学课程中占有重要地位。本节课选自人教版数学七年级上册第三章第一节的内容,是一节引入课,对于激发学生学习方程的兴趣,获得解决实际问题的基本方法具有十分重要的作用。本节课是结合学生已有学习经验,从算式到方程,继而对一元一次方程及方程的解进行了探究,让学生体验未知数参与运算的好处,用方程分析问题、解决问题(即培养学生建模的思想),体会学习方程的意义和作用。本节课是在承接小学学习的简易方程和刚刚学习的整式的加减的基础上进行学习的',同时又是后续学习二元一次方程、一元二次方程的重要基础。因此,这节课在教材中起到了承上启下的作用。

  学情分析

  学生前面已经学习了简单的方程及整式的内容,为本节课的学习做好了铺垫。

  七年级的学生思维活跃,求知欲强,有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,因而在教学素材的选取与呈现方式以及学习活动的安排上力求设置学生感兴趣的并且具有挑战性的内容,让学生感受到数学来源于生活又回归生活实际,无形中产生浓厚的学习兴趣和探索热情。

  七年级学生对于方程已经具备了一定的知识基础,但是对方程的理解还比较肤浅、模糊,还处于感性层面,缺乏理性的认识和把握,而且学生正处于感性认识向理性认识过渡的时期,抽象思维能力有待提高,对于一元一次方程的概念教学要选取具体的问题情境,逐步抽象。

  七年级的学生很想利用所学的知识解决问题,通过对几个问题的分析、探讨、相互交流,逐步培养学生的观察、探索、归纳等能力,提高对课本知识的运用能力,从而认识归纳一元一次方程的相关概念,在练习中巩固和熟悉一元一次方程。

  教学目标

  1.知识与技能目标

  (1)掌握方程、一元一次方程的定义,知道什么是方程的解。

  (2)体会字母表示数的好处,会根据实际问题的条件列方程,能检验出一个数值是否是方程的解。

  2.过程与方法目标

  (1)通过将实际问题抽象成数学问题,分析实际问题中的数量关系,利用其中的相等关系列出方程,渗透数学建模的思想,认识到从算式到方程是数学的一种进步。

  (2)通过具体情境贴近学生生活,在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化,会利用一元一次方程的知识解决一些实际问题。

  3.情感态度与价值观目标

  (1)通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考的意识。

  (2)激发学生的求知欲和学习数学的热情,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

  (3)经历从生活中发现数学和应用数学解决实际问题的过程,树立多种方法解决问题的创新意识,增强用数学的意识,体会数学的应用价值。

  教学重点、难点

  教学重点:1.方程、一元一次方程、方程的解的概念。

  2.根据实际问题的条件列出方程。

  教学难点:分析实际问题中的数量关系,利用其中的相等关系列出方程。

  教学过程

  一、创设情境 导入新课

  二、探究新知 形成概念

  三、应用新知 巩固提高

  四、感悟反思

  五、名题欣赏

  六、布置作业

  板书设计

一元一次方程教案2

  课题:3.4探究实际问题与一元一次方程 主备人

  教学目标

  基础知识: 掌握一元一次方程得解法,了解销售中的数量关系。

  基本技能: 能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

  基本思想

  方法: 通过将实际问题转化成数学问题,培养学生的建模思想;基本活动经验 体会解决实际问题的一般步骤及盈亏中的关系

  教学重点

  探索并掌握列一元一次方程解决实际问题的方法,

  教学难点

  找出已知量与未知量之间的关系及相等关系。

  教具资料准备

  教师准备:课件

  学生准备:书、本

  教 学 过 程

  一、 创设情景 引入新课

  观察图片引课(见大屏幕)

  二、 探究

  探究销售中的盈亏问题:

  1、商品原价200元,九折出售,卖价是 元.

  2、商品进价是30元,售价是50元,则利润

  是 元.

  2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元.

  3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元.

  4、某商品按定价的八折出售,售价是14.8元,则原定售价是 .

  (学生总结公式)

  熟悉各个量之间的联系 有助于熟悉利润、利润率售价进价之间联系

  三、 探究一

  某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

  分析:售价=进价+利润

  售价=(1+利润率)进价

  练习:(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

  (2)某文具店有两个进价不同的.计算器都卖64元,

  其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?

  (3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元.

  注:标价n/10=进(1+率)

  (4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在20xx年涨价30%后,20xx降价70%至a元,则这种药品在20xx年涨价前价格为 元.

  四、 小结

  通过本节课的学习你有哪些收获?你还有哪些疑惑?

  亏损还是盈利对比售价与进价的关系才能加以判断

  小组研究解决提出质疑

  优生展示讲解质疑

  五、作业布置:

  板书设计

  一元一次方程的应用-----盈亏问题

  相关的关系式: 例题

  课后反思 售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

一元一次方程教案3

  一、目标:

  知识目标:能熟练地求解数字系数的一元一次方程( 不含去括号、去分母)。

  过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。

  情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。

  二、重难点:

  重点:学会解一元一次方程

  难点:移项

  三、学情分析:

  知识背景:学生已学过用等式的性质来解一元一次方程。

  能力背景:能比较熟练地用等式的性质来解一元一次方程。

  预测目标:能熟练地用移项的方法来解一元一次方 程。

  四、教学过程:

  (一)创设情景

  一头半岁蓝鲸的'体 重是22t,90天后的体重是30.1t,蓝鲸的体重平均每天增加多少?

  (二)实践探索,揭示新知

  1.例2.解方程: 看谁算得又快:

  解:方程的两边同时加上 得 解: 6x ? 2=10

  移项得 6x =10+2

  即 合并同类项得

  化系数为1得

  大家看一下有什么规律可寻?可以讨论

  2 .移项的概念: 根据等式的基本性质方程中的某些项改变符号后,可以从方程的一边移到另一边 ,这样的 变形叫做移项。

  看谁做得又快又准确!千万不要忘记移项要变号。

  3.解方程:3x+3 =12,

  4.例3解方程: 例4解方程 :

  2x=5x-21 x- 3=4-

  5.观察并思考:

  ①移项有什么特点?

  ②移项后的化简包括哪些

  (三)尝试应用 ,反馈矫正

  1.下列解方程对吗?

  (1)3x+5=4 7=x-5

  解: 3x+ 5 =4 解:7=x-5

  移项得: 3x =4+5 移项得:-x= 5+7

  合并同类项得 3x =9 合并同类项得 -x= 12

  化系数为1得 x =3 化系数为1得 x = -12

  2解方程

  (1). 10x+1=9 (2) 2—3x =4-2x;

  (四)归纳小结

  1.今天学习了什么?有什么新的简便的写法?

  2.要注意什么?

  3. 解方程的 一般步骤是什么?

  4.. (1) 移项实际上 是对方程两边进行 , 使用的是

  (2)系数 化为 1 实际上是对方程两边进行 , 使用的是 。

  (3)移项的作用是什么?

  (五)作业

  1.课堂作业:课本习题4.2第二题

  2.家作:评价手册4.2第二课时

一元一次方程教案4

  教学

  目标⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.

  ⒉通过观察,归纳一元一次方程的概念.

  ⒊体会解决问题的一种重要的思想方法——尝试检验法.

  ⒋理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程.

  教学

  重点利用等式的两个性质解一元一次方程.教学

  难点一元一次方程的`概念和用尝试检验法求方程的解

  教学

  方法教学

  用具多媒体

  教学过程

  集体备课稿个案补充

  一、创设情境,引入新课

  kitty与小熊是一对好朋友!他们决定本月8号要去离家很远的游乐场旅行……

  问题1:今天是2号,再过几天是8号呢?

  问题2:终于盼来这一天了。坐出租车到车站花了5元,又买了两张去游乐场的车票,总共花去了13元.去游乐场的每张车票要多少元?

  问题3:门票的原价是多少?

  大家一起来说一说!

  同桌为一组,我们一起来找找这些方程有什么共同的特点

  1、方程的两边都是整式2、只有一个未知数3、未知数的指数是一次。这样的方程叫做一元一次方程!!

  二、讲授新课

  1、问题4:1、kitty与小熊玩的第一种游戏射击(限一人射2次),第二次射击成绩是9环,问第一次是几环?

  只取整数环

  由已知得,x为自然数且只能取0,1,2,3,4,5,6.把这些值分别代入方程左边得。这种方法叫尝试检验法

  x0123456

  使方程左右两边的值相等的未知数的值叫做方程的解。

  练习:判断下列t的值是不是方程2t+1=7-t的解:

  (1)t=2(2)t=-2

  2、课堂练习:见课件

  3、小结:

  4、作业:见作业本

一元一次方程教案5

  一、教材分析

  (一)教材的地位和作用

  本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用。学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到方程的数学思想方法。总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力。

  (二)教材的重难点

  本节的重点是探索并掌握列一元一次方程解决实际问题的方法。而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定找出已知量与未知量之间的关系,尤其是相等关系为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二。

  二、教学目标分析

  (一)知识技能目标

  1。目标内容

  (1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性。

  (2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识。

  2。目标分析

  (1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径。

  (2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力。

  (二)过程目标

  1。目标内容

  在活动中感受方程思想在数学中的作用,进一步增强应用意识。

  2。目标分析

  利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决。

  (三)情感目标

  1。目标内容

  (1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心。

  (2) 通过对实际问题的解决,进一步体会数学来源于生活,且服务于生活的辩证思想。

  2。目标分析

  七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切。利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键。

  三、教材处理与教法分析

  本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ)。根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者。本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果。课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识。

  四、教学过程分析

  (一)教学过程流程图

  探究Ⅰ

  (二)教学过程Ⅰ

  (以探究为主线、形式多样化)

  1。问题情境

  (1) 多媒体展示有关盈亏的新闻报道,感受生活实际。

  (2) 据此生活实例,展示探究Ⅰ,引入新课。

  考虑到学生不完全明白盈利、亏损这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ。

  2。讨论交流

  (1) 学生结合自己的生活实际,交流对盈利、亏损含义的理解。

  (2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)

  (3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由。在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识。

  (4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价。

  让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫。

  3。建立模型

  (1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系。

  (2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价。

  (3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况。

  (教师及时给出完整的解答过程)

  学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策。这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成。这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得

  实际问题与一元一次方程探索富有成效的学习体验。

  4。小结

  一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的.计算来检验自己的判断。

  培养学生科学的学习态度与严谨的学习作风。

  探究Ⅱ

  (三)教学过程Ⅱ

  1。在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突。

  恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性。

  启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:

  2。列代数式

  费用=灯的售价+电费

  电费=0。5灯的功率(千瓦)照明时间(时)

  在此基础上,用t表示照明时间(小时)。要求学生列出代数式表示这两种灯的费用。

  节能灯的费用(元):60+0。50。011t。

  白炽灯的费用(元):3+0。50。06t。

  分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础。

  3。特值试探 具体感知

  学生分组计算:

  t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:

  时间(小时)

  1000

  20xx

  2500

  3000

  节能灯的费用(元)

  白炽灯的费用(元)

  学生填完表格后,展示由表格数据制成的条形统计图。

  引导学生讨论:从统计图表,你发现了什么?

  问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同。

  由于在前面的第二节,学生已经学过两种移动电话计费方式的一道例题,因此学生应该能较熟练地完成表格中的特值试探。又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化。

  4。方程建模

  观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?

  列出方程:

  60+0。50。011t=3+0。50。06t

  5。合作交流 解释拓展

  (1) 照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时。但不超过3000小时,用哪种灯省钱?

  学生分组讨论,交流各自的看法。

  (2) 如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案。

  学生分组、讨论购灯方案只有三种:①两盏节能灯;②两盏白炽灯;③一盏节能灯、一盏白炽灯。

  学生计算各种方案所需费用。

  关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出使用节能灯3000小时,白炽灯500小时的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:

  设节能灯的照明时间为t(小时),那么总费用为:

  60+3+0。50。011t+0。50。06(3500—t)=168—0。0245t(03000)

  观察上式可看出,只有当t=3000时,总费用最低。

  培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力。讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质。此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验。

  6。反馈练习

  一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:

  (1) 什么情况下,购会员证与不购证付相同的钱?

  (2) 什么情况下,购会员证比不购证更合算?

  (3) 什么情况下,不购会员证比购证更合算?

  适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构。

  (四)教学小结

  学生分组小结本课学到了什么,各组发言交流体验、教师总结:

  五、设计说明

  七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切。因此我从以人为本的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力。

  (一)充分尊重学生的主体地位

  发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程。

  (二)树立方程建模思想

  突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识。

  (三)注重对学习过程与方法的评价

  关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展。

  (1) 某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元。问这种商品的定价为

  实际问题与一元一次方程探索多少元?

  (2) 某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5。6%)在明年的元旦付清,该洗衣机售价是每台8 224元,若两次付款相同,问每次应付款多少元?

  (3) 工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?

  (4) 一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离。

  (5) 甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30 800元,问甲、乙两人可获利润多少元?

  (6) 有人问老师班级有多少名学生时,老师说:一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球。你知道这个班有多少名学生吗?

  (7) 某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?

  综合运用

  4。某市居民生活用电基本价格是每度0。40元,若每月用电量超过a度,超出部分按基本电价的70%收费。

  (1) 某户五月份用电84度,共交电费30。72元,求a;

  (2) 若该户六月份的电费平均为每度0。36元,求六月份共用电多少度?应交电费多少元?

  5。为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按0。45元/吨收费;超过10吨而不超过20吨部分,按0。80元/吨收费;超过20吨部分,按1。5元/吨收费。现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?

  6。一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进。突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合。你知道这名队员从离队到与队员重新会合,经过了多长时间吗?

  7。有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时。这8名同学都能赶上火车吗?

  拓广探索

  8。一家庭(父亲、母亲和孩子们)去某地旅游。甲旅行社说:如父亲买全票一张,其余人可享受半价优惠。乙旅行社说:家庭旅行算集体票,按原价的优惠。这两家旅行社的原价相同。你知道哪家旅行社更优惠吗?

一元一次方程教案6

  教学目标:

  一、知识与技能:

  1、熟练运用列方程解应用题的一般步骤列方程;

  2、让学生学会列一元一次方程解决与行程有关的实际问题。

  二、过程与方法:

  1、借助“线段图”分析行程问题中的数量关系,从而将实际问题转化为数学问题,体会转化等数学思想方法;

  2、通过列方程解决实际问题,培养学生发现问题、提出问题的能力。激发学生的求知欲。

  三情感态度与价值观:

  1、在列一元一次方程解决与行程有关的实际问题过程中,让学生感知生活中的实际问题与数学的关系。

  2、在探索和交流的过程中,培养学生小组合作的能力。懂得学习数学的重要性。

  教学重难点:

  重点:经历将实际问题转化为数学问题的过程中,发展学生发现问题、提出问题、分析问题和解决问题的能力。

  难点:从不同的角度来找等量关系,列出一元一次方程。

  前置作业:写出有关行程问题的公式。

  教学过程:

  一、问题导入

  问题1、

  (1)、若小红每秒跑4米,那么他5秒能跑___米。

  (2)、小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分。

  (3)、已知小强家离火车站20xx米,他以5米/秒的速度骑车到达车站需要__秒。

  问题2、知识回顾

  在行程问题中,我们常常研究这样的三个量:

  分别是:_________,________,_________.

  其中,路程=______×______

  速度=______÷______

  时间=______÷______

  二、探索过程

  活动一:小组内完成例3,(1)先自己独立思考,再小组交流讨论。

  (2)然后每个小组派一名组员展示,并说出解决问题的'思路。

  课件出示:

  例3:某中学组织学生到校外参加义务植树活动。一部分学生骑自行车先走,速度为9千米/时;40分钟后其余学生乘汽车出发,速度为45千米/时,结果他们同时到达目的地。目的地距学校多少千米?

  若设目的地距学校x千米,填表


路程/千米


速度/(千米/时)


时间/时


骑自行车





乘汽车





  由此,可以得到等量关系:

  问题3、想一想:题目中已知什么量?所求什么量?是直接设未知量还是间接设未知量?等量关系是什么?

  学生活动:组织学生以小组为单位进行展示,结合表格说出解题思路,教师适时点拨,引导学生发现等量关系。

  (设计意图:学生积极参与,紧跟老师的思路思考问题,从而培养了学生发现问题和提出问题的能力。)

  预设1:设目的地距学校x千米,

  列出方程:由学生讨论列出

  预设2:求出方程的解,并板演解题过程。

  (小组交流之后,把解题过程写在导学案上)

  问题4、上述问题是否有其它的解法?如果有,又如何设未知数呢?等量关系又是什么呢?

  预设3:设汽车从学校到目的地要行驶x小时

  根据等量关系:汽车行程= 自行车行程

  列出方程:学生交流讨论后列出方程

  预设学生4:板演解题过程。

  问题5、上面两种做法有什么不同?还有没有不同想法呢?学生交流

  (设计意图:此环节充分发挥学生的发现问题和提出问题的能力,并让学生打开思维空间,目的在于让学生自己感受直接设元与间接设元的区别。)

  活动二:归纳列一元一次方程解应用题的一般步骤

  问题6、根据例3,能否归纳列一元一次方程解应用题的一般步骤是什么?

  预设1: (1)审清题意; (2)设出未知数;(3)找出等量关系; (4)根据等量关系列方程;(5)解方程; (6)写出答案

  预设2:这是实际问题,用需要检验吗?什么时候检验呢?

  教师适时搭建支架:实际应用问题需要检验,解出方程就要检验,为了方便记忆,能否简记步骤?

  预设3:列一元一次方程解实际问题的一般步骤:

  1、审; 2、设; 3、找; 4、列;5、解; 6、验; 7、答

  活动三:强化演练,巩固知识。

  问题7、相遇问题: 1、两辆汽车从相距84千米的两地同时出发相向而行,甲车的速度比乙车的速度快每小时20千米.半小时两车相遇,两车的速度各是多少?

  预设学生1:画线型图,分析相遇问题的等量关系:因为两人同时出发,相向而行,则等量关系:甲的路程+乙的路程=84千米

  (学生活动:先独立思考,再小组交流,最后把过程整理在导学案上。)

  问题8、追及问题:2、甲、乙两名同学练习百米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑6.5米,那么甲经过几秒可以追上乙?

  预设学生2:分析追及问题的等量关系:乙先跑的路程+乙后跑的路程=甲跑的路程

  (设计意图:通过补充相遇问题和追及问题,让学生熟练掌握解决与行程问题有关的应用问题,并学会找等量关系,从而把实际问题转化为数学问题。)

  活动四:尝试成功

  1.A、B两地相距480千米,一慢车从A地开出,每小时走60千米,一快车从B地开出每小时走90千米,

  (1)两车同时开出,相向而行,x小时相遇,则可列方程 ;

  (2)两车同时开出,背向而行,x小时后两车相距630千米,则可列方程为 ;

  (3)慢车先开出1小时,相向而行,快车开出x小时相遇,则可列方程为 ;

  (4)若两车同时开出,同向而行,快车在慢车后面,

  x小时后快车追上慢车,则可列方程为

  学生活动:学生独立思考,小组交流后,小组代表展示。

  (设计意图:通过尝试成功这一环节,用课件出示一题多问的问题,充分发挥学生的发散思维,让学生梳理各种问题的提法,目的在于让学生自己感受数学的多变性和趣味性,从而提高学生发现问题、提出问题和解决问题的能力;通过让学生抢答,体验成功的快乐,增强学生的自信心。)

  三、课堂小结

  问题9、今天我们学习了哪些知识?今天学习了哪些数学方法?通过这节课的学习,你有哪些收获和体会?

  (学生活动:组员各抒己见,组长补充)

  (设计意图:学生不仅会从知识上总结,而且还要会从探索过程和思想方法上进行总结。从探索过程来说,通过画线型图,找出等量关系,经历了发现问题、提出问题、分析问题、解决问题的过程;从思想方法上,会把实际问题转化成为数学问题,即转化的思想方法。)

  四、布置作业

  某同学在做作业时,不慎将墨水打翻,使一道题只能看到:“甲、乙两地相距160千米,摩托车的速度为每小时45千米,运货汽车的速度为每小时35千米, ? ”请试一试将这道题补充完整,并给出答案.

  (学生思考后,说出各种补充方法)

  (设计意图:通过设计开放性作业,让学由余力的学生有发展的空间,便于学生开展自主学习,同时学生根据自己的能力有选择地完成巩固新学的知识、技能和方法,开放性的作业可以满足不同层次学生的需要,从而使不同层次的学生得到不同的发展。)

一元一次方程教案7

  一、素质教育目标

  (一)知识教学点:

  1.熟练运用判别式判别一元二次方程根的情况.

  2.学会运用判别式求符合题意的字母的取值范围和进行有关的证明.

  (二)能力训练点:

  1.培养学生思维的严密性,逻辑性和灵活性.

  2.培养学生的推理论证能力.

  (三)德育渗透点:通过例题教学,渗透分类的思想.

  二、教学重点、难点、疑点及解决方法

  1.教学重点:运用判别式求出符合题意的字母的取值范围.

  2.教学难点:教科书上的黑体字“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根”可看作一个定理,书上的“反过来也成立”,实际上是指它的逆命题也成立.对此的正确理解是本节课的难点.可以把这个逆命题作为逆定理.

  三、教学步骤

  (一)明确目标

  上节课学习了一元二次方程根的判别式,得出结论:“一元二次方程ax2+bx+c=0(a≠0),当>0时,有两个不相等的实数根;当=0时,有两个相等的实数根;当<0时,没有实数根.”这个结论可以看作是一个定理.在这个判别方法中,包含了所有各种情况,所以反过来也成立,也就是说上述结论的逆命题是成立的',可作为定理用.本节课的目标就是利用其逆定理,求符合题意的字母的取值范围,以及进行有关的证明.

  (二)整体感知

  本节课是上节课的延续和深化,主要是在“明确目标”中所提的逆定理的应用.通过本节课的内容的学习,更加深刻体会到“定理”与“逆定理”的灵活应用.不但不求根就可以知道根的情况,而且知道根的情况,还可以确定待定的未知数系数的取值,本节课内容对学生严密的逻辑思维及思维全面性进行恰如其分的训练.

  (三)重点、难点的学习及目标完成过程

  1.复习提问

  (1)一元二次方程的一般形式?说出二次项系数,一次项系数及常数项.

  (2)一元二次方程的根的判别式是什么?用它怎样判别根的情况?

  2.将复习提问中的问题(2)的正确答案板书,反之,即此命题的逆命题也成立,即“一元二次方程ax2+bx+c=0,如果方程有两个不相等的实数根,则>0;如果方程有两个相等的实数根,则=0;如果方程没有实数根,则<0.”即根据方程的根的情况,可以决定值的符号,‘’的符号,可以确定待定的字母的取值范围.请看下面的例题:

  例1已知关于x的方程2x2-(4k+1)x+2k2-1=0,k取什么值时

  (1)方程有两个不相等的实数根;

  (2)方程有两个相等的实数根;

  (1)方程无实数根.

  解:a=2,b=-4k-1,c=2k2-1,b2-4ac=(-4k-1)2-4×2×(2k2-1)

  =8k+9.

  方程有两个不相等的实数根.

  方程有两个相等的实数根.

  方程无实数根.

  本题应先算出“”的值,再进行判别.注意书写步骤的简练清楚.

  练习1.已知关于x的方程x2+(2t+1)x+(t-2)2=0.

  t取什么值时,(1)方程有两个不相等的实数根?(2)方程有两个相等的实数根?(3)方程没有实数根?

  学生模仿例题步骤板书、笔答、体会.

  教师评价,纠正不精练的步骤.

  假设二项系数不是2,也不是1,而是k,还需考虑什么呢?如何作答?

  练习2.已知:关于x的一元二次方程:

  kx2+2(k+1)x+k=0有两个实数根,求k的取值范围.

  和学生一起审题(1)“关于x的一元二次方程”应考虑到k≠0.(2)“方程有两个实数根”应是有两个相等的实数根或有两个不相等的实数根,可得到≥0.由k≠0且≥0确定k的取值范围.

  解:=[2(k+1)]2-4k2=8k+4.

  原方程有两个实数根.

  学生板书、笔答,教师点拨、评价.

  例求证:方程(m2+1)x2-2mx+(m2+4)=0没有实数根.

  分析:将算出,论证<0即可得证.

  证明:=(-2m)2-4(m2+1)(m2+4)

  =4m2-4m4-20m2-16

  =-4(m4+4m2+4)

  =-4(m2+2)2.

  不论m为任何实数,(m2+2)2>0.

  -4(m2+2)2<0,即<0.

  (m2+1)x2-2mx+(m2-4)=0,没有实根.

  本题结论论证的依据是“当<0,方程无实数根”,在论证<0时,先将恒等变形,得到判断.一般情况都是配方后变形为:a2,a2+2,(a2+2)2,-a2,-(a2+2)2,-(a+2)2,……从而得到判断.

  本题是一道代数证明题,和几何类似,一定要做到步步有据,推理严谨.

  此种题型的步骤可归纳如下:

  (1)计算;(2)用配方法将恒等变形;

  (3)判断的符号;(4)结论.

  练习:证明(x-1)(x-2)=k2有两个不相等的实数根.

  提示:将括号打开,整理成一般形式.

  学生板书、笔答、评价、教师点拨.

  (四)总结、扩展

  1.本节课的主要内容是教科书上黑体字的应用,求符合题意的字母的取值范围以及进行有关的证明.须注意以下几点:

  (1)要用b2-4ac,要特别注意二次项系数不为零这一条件.

  (2)认真审题,严格区分条件和结论,譬如是已知>0,还是要证明>0.

  (3)要证明≥0或<0,需将恒等变形为a2+2,-(a+2)2……从而得到判断.

  2.提高分析问题、解决问题的能力,提高推理严密性和思维全面性的能力.

  四、布置作业

  1.教材P.29中B1,2,3.

  2.当方程x2+2(a+1)x+a2+4a-5=0有实数根时,求a的正整数解.

  (2、3学有余力的学生做.)

  五、板书设计

一元一次方程教案8

  教学目标

  (一)知识认知要求

  1、认识一元一次方程与一次函数问题的转化关系;

  2、学会用图象法求解方程;

  3、进一步理解数形结合思想;

  (二)能力训练要求

  1、通过一元一次方程与一次函数的图象之间的结合,培养学生的数形结合意识;

  2、训练大家能利用数学知识去解决实际问题的能力。

  (三)情感与价值观要求

  体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。

  教学重点与难点

  1、理解一元一次不方程与一次函数的转化及本质联系。

  2、掌握用图象求解方程的方法。

  教学过程

  一、提出问题

  (1)方程2x+20=0;(2)函数y=2x+20

  观察思考:二者之间有什么联系?

  从数上看:方程2x+20=0的解,是函数y=2x+20的.值为0时,对应自变量x的值

  从形上看:函数y=2x+20与x轴交点的横坐标即为方程2x+20=0的解

  根据上述问题,教师启发学生思考:

  根据学生回答,教师总结:

  由于任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某一个函数的值为0时,求相应的自变量的值。从图象上看,这相当于已知直线y=ax+b,确定它也x轴交点的横坐标的值。

  二、典型例题:

  例1、(书中例1)一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度为17米/秒?

一元一次方程教案9

  一、教材分析

  1、本节内容的地位和作用

  (1)本节课是七年级第七章《用一元一次方程解决实际问题》的第3课时,主要学习用一元一次方程解决路程问题。通过上两节课的学习,学生已经初步掌握了用一元一次方程解决实际问题的方法,本节课在此基础上,结合路程问题,进一步学习如何从实际问题中分析数量关系,用一元一次方程解决实际问题。对学习函数、不等式与其他方程解实际问题都具有重要的意义和作用。

  2、教学目标(认知、能力、情感)

  (1)知识目标

  能借助“列表”的方法审题、找等量关系,进而用一元一次方程解决路程问题。

  (2)能力目标

  进一步培养学生分析问题,解决实际问题的能力。

  (3)情感目标

  通过实际问题的解决,让学生认识数学的价值和学习数学的必要性;通过问题情境的设置,让学生热爱生活、热爱体育。

  3、教学重点:

  引导学生经历借助“列表法”找等量关系,用一元一次方程模型解决路程问题的过程。

  知识、方法重要,其获取过程更重要,在教学中不能只重结果而忽视过程中学生经历的观察、分析、交流等活动,不然学生就不具备主动建构知识的能力和持续发展的动力,只会成为解题工具,所以我把方法获取过程作为本课的重点。

  4、教学难点

  掌握用列表的方法审清题意,抽象具体问题中的数学背景,建立数量间的等量关系。

  用一元一次方程解决实际问题的关键是找到等量关系。体会“列表法”在把握路程问题等量关系的优越性,进而掌握这种方法是学生感到困难的,所以把它是本节课的难点。

  5、教法学法

  优选教法

  本节课主要采用“学生主体性学习”的教学模式。通过多媒体创设情境,激发学生兴趣,问题让学生想,设计问题让学生做,方法技巧让学生归纳。教师的作用在于组织、引导、点拨,促进学生主动探索,积极思考,归纳,充分发挥学生的主体作用,让学生真正成为课堂的主人.

  指导学法

  学生不是被动的接受信息,而是在“结合具体情景、设计解决策略、与他人合作交流、自我反思”的过程中学习。

  二、教学环节

  我把本节课设计为5个环节:

  1、情境引入相遇问题,初步感知列表方法

  张叔叔和他的朋友们开着越野车一同去森林探险,他们来到了森林不久不幸被一条毒蛇咬了,这种毒性在8小时就会发作,他们知道离森林大约600千米的地方有一个大医院,本医院的救护车60千米/小时,可他们开的越野车40千米/小时,你们想想,用什么办法就可以救张叔叔呢?

  通过救人情境的创设,既对学生已有知识的检测,又激发学生解决问题的兴趣,在不知不觉中引入路程问题——相遇问题。

  引入问题后,学生独立思考如何确定问题中的等量关系,然后课堂交流理清题意、找到等量关系的方法(画图或列表)。在此基础上,引导学生探究如何用列表的方法理清题目中的数量,让学生初步感受“列表”表示数量关系的优越性。

  本环节让学生在独立思考、交流探讨中感受“列表法”,让学生参与的知识获取过程,真正体现了学生是数学学习的主人。

  2、感悟故事中的追及问题,拓展提高对列表的认识

  第二场龟兔赛跑:兔子为了体现自己的速度确实比乌龟快的多,他们约定兔子让乌龟先行40分钟,并且在比赛中兔子和乌龟都每跑1分钟,停1分钟,如果乌龟以每分钟1.2米的速度爬行,兔子以每分钟12米的速度行进,试问兔子追上乌龟需要多长时间?追上的地点距出发点有多远?

  以同学们熟悉的故事为背景,配以形象生动的.动画,引入路程问题——追击问题。然后让学生应用列表法表示追击问题的数量关系,思考解决问题的多种方法(根据不同等量关系,设不同未知数,列出不同的方程),进一步体会“列表”表示数量关系的威力。

  教学过程不能简单地重复,学习过程也不能使机械地模仿,而应在螺旋上升的过程中不断提高。由相遇问题到追击问题,由一种方法到两种方法,就是这一理念的直接体现。学生在应用“列表”法的过程中,提高对“列表”法表示数量关系优越性的认识。

  3、回归现实,梳理新知

  浙江奥运健儿孟关良,在雅典奥运会上的夺冠为水上项目获得了第一枚金牌,掀开了水上项目的新章。金牌后面是无数的汗水,在千岛湖,孟关良是这样艰苦训练的:一艘快艇与孟关良的皮艇在同一起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?

  本环节让学生应用所学知识解决现实生活中的问题。

  本题以“奥运”为背景,不仅反映了数学来源于实际生活,同时也体现了知识的实用价值,而且解决问题的过程也是一个“数学化”的过程。这一环节既对路程问题进行了巩固练习又渗透了爱国主义教育。

  4、合作互动,深化提高

  编写一道应用题,使它的题意适合一元一次方程60x=40x+100,要求题意清楚、联系生活、符合实际、有一定的创意。

  本环节让学生以小组为单位编写题目。

  前面的环节是由实际问题到数学模型,现在是由数学模型到实际问题,不仅有利于学生获取知识,而且也有利于学生展示聪明才智、形成独特个性和发展创新。以小组为单位编写题目不仅可以发挥学生的集体智慧,而且还可以培养他们的合作和团队意识。

  5、畅谈收获,内化提高

  这节课体验到了什么?

  让学生本节学习收获和感受,全体同学交流。

  对学生数学学习的既要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,课后设计的畅谈收获,把课堂还给了学生,他们收获,交流疑问,当堂消化本节内容,让每一个学生都体验到成功的喜悦,学生的主体地位得以充分体现。

  设计亮点

  (1)本节课在情境的创设上,突出了现实性、趣味性和挑战性,学生喜闻乐见,使他们能快速进入问题的解决。

  (2)让学生经历实践—–认识——再实践——再认识的过程,在这个过程中,学生分析问题和解决问题的能力螺旋上升,符合学生学习数学的心理规律。

一元一次方程教案10

  一、课题名称:3.3解一元一次方程(二)——去括号与去分母

  二、教学目的和要求:

  1、知识目标

  (1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;

  (2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

  2、能力目标

  (1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;

  (2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

  3、情感目标

  (1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

  (2)培养学生严谨的思维品质;

  (3)通过学生间的相互交流、沟通,培养他们的协作意识。

  三、教学重难点:

  重点:去分母解方程。

  难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。

  四、教学方法与手段:

  运用引导发现法,引进竞争机制,调动课堂气氛

  五、教学过程:

  1、创设情境,提出问题

  问题1:我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。

  学生思考,根据自己对一元一次方程的理解程度自由编题。

  问题2:解方程5(x-2)=8

  解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

  2、探索新知

  (1)情境解决

  问题1:设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。

  问题2:教室引导学生寻找相等关系,列方程。

  根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

  问题3:怎样使这个方程向x=a的形式转化呢?

  6x+6(x-20xx)=150000

  ↓去括号

  6x+6x-12000=150000

  ↓移项

  6x+6x=150000+12000

  ↓合并同类项

  12x=162000

  ↓系数化为1

  x=13500

  问题4:本题还有其他列方程的方法吗?

  用其他方法列出的方程应怎样解?

  设下半年每月平均用电x度,则6x+6(x+20xx)=150000.

  (学生自己进行解决)

  归纳结论:方程中有带括号的式子时,根据乘法分配率和去括号法则化简。(见“+”不变,见“—”全变)

  去括号时要注意:

  (1)不要漏乘括号内的任何一项;

  (2)若括号前面是“—”号,记住去括号后括号内各项都变号。

  (2)解一元一次方程——去括号

  例题、解方程:3x—7(x—1)=3—2(x+3)。

  解:去括号,得3x—7x+7=3—2x—6

  移项,得3x—7x+2x=3—6—7

  合并同类项,得—2x=—10

  系数化为1,得x=5

  3、变式训练,熟练技能

  (1)解下列方程:

  (1)10x-4(3-x)-5(2+7x)=15x-9(x-2);

  (2)3(2-3x)-3[3(2x-3)+3]=5;

  (3)2 (x+1)+3(x+2)-3=-4(x+3).

  (2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  (3)学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?

  4、总结反思,情意发展

  (1)本节课你学习了什么?

  (2)本节课你有哪些收获?

  (3)通过今天的学习,你想进一步探究的问题是什么?

  可以归纳为如下几点:

  ①本节主要学习用去括号的方法解一元一次方程。

  ②主要用到的思想方法是转化思想。

  ③注意的问题:括号前是“—”号的.,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。

  5、布置作业

  (1)必做题:课本第98页习题3.3第

  1、2题。

  (2)选做题:

  ①解方程:3x-2[3(x-1)-2(x+2)]=3(18-x)。

  ②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?

  六、课后小结:

  本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开

  思考、讨论,进行学习。

  强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。

  从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。

一元一次方程教案11

  数学思考:

  1、学习分析问题找到相等关系并通过列方程解决问题的方法;

  2、通过学习移项解一元一次方程,体会到式子变形的转化作用。

  解决问题:

  体会解方程中的化归思想,会移项、合并解ax+b=cx+d型的方程,进一步认识如何用方程解决实际问题。

  情感态度:

  通过学习“合并”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发数学学习的热情。

  教学重点:

  1、找相等关系列一元一次方程;

  2、用移项、合并等解一元一次方程。

  教学难点:

  找相等关系列方程,正确地移项解一元一次方程。

  教学过程:

  [活动1]展示问题、创设情境

  把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

  (学生自主分析后,教师提问:)

  1、本题怎样设未知数?

  2、这批书的总数有几种表示法?它们之间有什么关系?

  3、本题哪个相等关系可以作为列方程的依据呢?

  (师生共同列出方程。)

  解:设有x名学生,则可列方程得:

  3x+20=4x—25

  [活动2]学习“移项”解方程

  提问:如何解方程3x+20=4x—25呢?

  (学生分组讨论:①解方程的。目标是什么?②利用什么知识可以实现这种转化?)

  引导学生分析方程的.变化:

  3x+20=4x—25

  3x—4x=—25—20

  观察:上面方程的变形有些什么变化?

  归纳:像这样把等式一边的某项变号后移到另一边叫做移项。

  [活动3]总结

  解这个方程的具体过程:

  3x+20=4x—25

一元一次方程教案12

  一、教学分析:

  本节课设计简析:本节课内容是列方程解应用题,主要是小学解应用题和中学解应用题的衔接,让学生感受数学与现实生活息息相关,并且体验数学的趣味性,提高学习数学的积极性。

  二、教学目标:

  (一)知识目标:

  1、通过身边的故事,引导学生对生活中的问题进行探讨和研究,学会用方程的思维解决问题。

  2、借助找关键句或关键词、画线段图或示意图等方法,引导学生正确找出题中的等量关系,列出方程。

  (二)能力目标:

  1、通过小组合作学习活动,培养学生的合作意识和语言表达能力。

  2、培养学生的观察、分析能力以及用方程思维解决问题的能力。

  (三)情感目标:

  1、使学生在讨论、交流的学习过程中获得积极的情感体验,探索意识、创新意识得到有效发展。

  2、在分析应用题的过程中,培养学生勇于探索、自主学习的精神。感受到生活中处处存在数学,体验数学的趣味性

  教学重点、难点:

  能分析题意,正确找出题中的等量关系,列出方程解决问题。

  教学过程:

  一、温故:

  分别算出下列绳子的总长度

  【设计意图:为下面的例题做好铺垫】

  二、新课引入:

  我今天给大家讲一个故事,故事的主人翁是丢番图,希腊数学家丢番图(公元3~4世纪)的墓碑上记载着:

  “他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一:再过五年,他有了儿子,感到很幸福;可是,儿子只

  活了他父亲全部生命的一半;儿子死后,他又在极度的悲伤中度过了四年,也与世长辞了。” 根据以上的信息,请你计算出: 丢番图死时多少岁;

  或者根据丢番图的年龄能被6,12,2,7整除,可知这个年龄是6,12,2,7的倍数,所以他的年龄为84,168??但是根据迄今被《吉尼斯世界记录》认可的世界上寿命最长的人是法国的让-卡尔门特,他在1997年8月4日去世时享年122岁。所以丢番图的年龄为84岁。

  【设计意图:这个题目有一定的难度和趣味性,可以在开课时吸引全班学生的注意力,同时这个题目可以用方程解法和算式解法,甚至还可以用以前学过的倍数来解决,解题方法多样性,可以锻炼学生的思维,也可以做到小学用算式和中学列方程解应用题的衔接。通过这个题目对比两种解法可以看出:算术解法是把未知量置于特殊地位,设法用已知量组成的混合运算式表示出来(在条件较复杂时,列出这样的式子往往比较困难);代数解法是把未知量与已知量同等对待(使未知量在分析问题的过程中也能发挥作用),找出各量之间的等量关系,建立方程.】

  总结:列方程解应用题的一般步骤:

  (1)“审”:审清题意; (2)“设”:设未知数并把有关的量用含有未知数的代数式表示;

  (3)“列”:根据等量关系列出方程; (4)“解”:解方程; (5)“答”:检验作答。

  三、巩固练习,提高能力

  1、一只天鹅在天空中飞翔时遇到了一群天鹅,它向群鹅问好:“你们好啊,100只天鹅。”群鹅回答说:“我们不是100只,但是如果以我们这么多,再加上这么多,在加上我们的一半,再加上我们一半的一半,你也加进来,那么我们就是100只了,”问天上飞的群鹅有多少只?

  解:设群鹅有x只。 【设计意图:这个题目和例题思路差不多,可以检验学生是否听懂例题,语言生活化,可以引起学生的.兴趣。此题可以利用画线段来分析题意,列出方程。】

  1、现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,请问多少年后父亲的年龄是儿子年龄的3倍。

  解:设x年后父亲的年龄是儿子年龄的3倍

  儿子 爸爸

  现在的年龄 8 8×4

  X年后的年龄 8+X 8×4+X 然后根据题意列出方程解答。

  【设计意图:这个题目用算式解题较容易出错,但是用方程解很简单,让学生体验用方程成功解应用题的成就感】

  3、我的地盘,我做主!

  编题目:根据方程X+(X+8)= 40,编一道应用题。

  【设计理念:学生具备了读懂题目,列出方程的能力,那么能不能根据一个方程自己编一道应用题呢?这是能力的提升!学生编完题后互相检验,又再一次锻炼了学生分析题意的能力】

  四、小结:

  今天你有什么收获?体验到方程有时候给我们解应用题带来很大的方便。

  思考题:1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住,如果再飞来5只鸽子,每个鸽笼刚好住8只鸽子,原有多少个鸽笼?多少只鸽子?

  【设计理念:经典问题如何用方程解决】

  2、有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍。”乙回答说:“最好还是把你的羊给我一只,我们的羊数就相等了,”两个牧童各有多少羊?

  【设计意图:这个题目看起来比较简单,学生很容易说出答案4、6或者1,3等,但是经过列式计算发现是错的,这个题目可能有一些学生会用二元的方程解题,对用这种方法的同学提出表扬】

  【设计理念:练习的设计体现了层次性和趣味性。同时也适合不同程度的学生,让学生在不同层次、不同类型的题目中得到锻炼,提高解题能力。同时让学生感受用方程的方法解决问题的乐趣,拓展学生的思维。】

一元一次方程教案13

  教学目的

  1.使学生会进行简单的公式变形。

  教学分析

  重点:含字母系数的一元一次方程的解法。

  难点:含字母系数的一元一次方程的解法及公式变形。

  教学过程

  一、复习

  1.试述一元一次方程的意义及解一元一次方程的步骤。

  2.什么叫分式?分式有意义的条件是什么?

  二、新授

  1.公式变形

  引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式

  s=vt①

  来计算。

  有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。因为v≠0,所以

  t=。②

  这就是已知行驶的路程和速度,求行驶的时间的公式。

  类似地,如果已知s,t(t≠0),求v,可以得到

  v=。③

  公式②,③有时也可分别写成t=sv-1;v=st-1。

  以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。当v、t都不等于零时,可以把公式①变换成公式②或③。

  像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。

  例3在v=v0+at中,已知v、v0、a且a≠0。求t。

  解:移项,得v-v0=at。

  因为a≠0,方程两边都除以a,得。

  例4在梯形面积公式S=中,已知S、b、h且h≠0,求a。

  解:去分母,得2S=(a+b)h,ah=2S-bh

  因为h≠0,议程两边都除以h,得

  三、练习

  P92中练习1,2,3。

  四、小结

  公式变形的'实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。

  五、作业作业:P93中习题9.5A组7,8,9。

  另:需要注意的几个问题

一元一次方程教案14

  教学目标:

  1.知识目标

  (1)通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力。

  (2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。

  2.能力目标

  (1)通过学生观察、独立思考等过程,培养学生归纳、概括的能力;

  (2)进一步让学生感受到并尝试寻找不同的解决问题的方法。

  3.情感目标:

  (1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;

  (2)培养学生严谨的思维品质;

  (3)通过学生间的互相交流、沟通,培养他们的协作意识。

  教学重点:

  1.弄清列方程解应用题的思想方法;

  2.用去括号解一元一次方程。

  教学难点:

  1.括号前面是-号,去括号时,应如何处理,括号前面是-号的,去括号时,括号内的各项要改变符号。

  2.在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想。

  教学过程:

  一、 创设情境,提出问题

  问题1:我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快又对。

  学生思考,根据自己对一元一次方程的理解程度自由编题。

  问题2:解方程5(x-2)=8

  解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的'奥秘。

  问题3:某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少20xx度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?

  (教学说明:给学生充分的交流空间,在学习过程中体会取长补短的涵义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力)

  二、 探索新知

  1. 情境解决

  问题1 :设上半年每月平均用电x度,则下半年每月平均用电________度;上半年共用电__________度,下半年共用电_________度。

  问题2:教师引导学生寻找相等关系,列出方程。

  根据全年用电15万度,列方程,得6x+6(x-20xx)=150000.

  问题3:怎样使这个方程向x=a的形式转化呢?

  6x+6(x-20xx)=150000

  去括号

  6x+6x-12000=150000

  移项

  6x+6x=150000+12000

  合并同类项

  12x=162000

  系数化为1

  x=13500

  问题4:本题还有其他列方程的方法吗?

  用其他方法列出的方程应怎样解?

  设下半年每月平均用电x度,则6x+6(x+20xx)=150000.(学生自己进行解题)

  归纳结论:方程中有带括号的式子时,根据乘法分配律和去括号法则化简。(括号前面是+号,把+号和括号去掉,括号内各项都不改变符号;括号前面是-号,把-号和括号去掉,括号内各项都改变符号。)

  去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是-号,记住去括号后括号内各项都变号。

  2. 解一元一次方程去括号

  例题:解方程3x-7(x-1)=3-2(x+3)

  解:去括号,得3x-7x+7=3-2x-6

  移项,得 3x-7x+2x=3-6-7

  合并同类项,得 -2x=-10

  系数化为1,得x=5

  三、 课堂练习

  1.课本97页练习

  2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其它年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?

  四、总结反思

  1.本节课你学习了什么?

  2.通过今天的学习,你想进一步探究的问题是什么?

  ( 由学生自主归纳,最后老师总结)

  四、 作业布置

  1. 课本102页习题3.3第1、4题

  2. 配套资料相关练习

  教学反思:本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出答案。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习

一元一次方程教案15

  1.移项法则

  (1)定义

  把原方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.

  例如:

  (2)移项的依据:等式的基本性质1.

  辨误区移项时的注意事项

  ①移项是将方程中某一项从方程的一边移到另一边,不是左边或右边某些项的交换;②移项时要变号,不能出现不变号就移项的情况.

  【例1】下列方程中,移项正确的是().

  A.方程10-x=4变形为-x=10-4

  B.方程6x-2=4x+4变形为6x-4x=4+2

  C.方程10=2x+4-x变形为10=2x-x+4

  D.方程3-4x=x+8变形为x-4x=8-3

  解析:选项A中应变形为-x=4-10;选项C中不是移项,只是交换了两项的位置,正确的移项是-2x+x=4-10;选项D中应变形为-4x-x=8-3,只有选项B是正确的.

  答案:B

  2.解一元一次方程的一般步骤

  (1)解一元一次方程的步骤

  去分母→去括号→移项→合并同类项→未知数的系数化为1.

  上述步骤中,都是一元一次方程的变形方法,经过这些变形,方程变得简单易解,而方程的解并未改变.

  (2)解一元一次方程的具体做法

  变形

  名称具体做法变形依据注意事项

  去分母两边同时乘各分母的最小公倍数等式的基本性质2不要漏乘不含分母的项

  去括号先去小括号,再去中括号,最后去大括号去括号法则、乘法分配律不要漏乘括号内的每一项,注意符号

  移项含有未知数的项移到方程的一边,常数项移到另一边等式的基本性质1移项要变号,不要漏项

  合并

  同类

  项把方程化成ax=b(a≠0)的形式合并同类项法则系数相加,字母及指数不变

  系数

  化为1两边都除以未知数的系数等式的基本性质2分子、分母不要颠倒

  【例2-1】解方程:4x+5=-3+2x.

  分析:按以下步骤解方程:

  解:移项,得4x-2x=-3-5.

  合并同类项,得2x=-8.

  系数化为1,得x=-4.

  【例2-2】解方程65100(y-1)=37100(y+1)+0.1.

  分析:方程中既含有分母,又含有括号,根据方程的形式特点,还是先去分母比较简便.

  解:去分母,得65(y-1)=37(y+1)+10.

  去括号,得65y-65=37y+37+10.

  移项,得65y-37y=37+10+65.

  合并同类项,得28y=112.

  系数化为1,得y=4.

  点评:解一元一次方程,要注意根据方程的特点灵活运用解一元一次方程的一般步骤,不一定非按这个“一般步骤”的顺序,适合先去分母的要先去分母,适合先去括号的要先去括号,去分母、去括号时,注意不要出现漏乘,尤其是注意不要漏乘常数项,移项时要注意变号.

  3.分子、分母中含有小数的一元一次方程的解法

  当分子、分母中含有小数时,一般是先根据分数的基本性质,将分数的分子、分母同乘以一个适当的`整数,将其中的小数化为整数再解方程.需要注意的是这一步变形根据的是分数的基本性质,而不是等式的基本性质;变形时是分数的分子、分母同乘以一个适当的整数,而不是在方程的两边同乘以一个整数.

  【例3】解方程0.4x+0.90.5-0.03+0.02x0.03=1.

  分析:原方程的分子、分母中都含有小数,利用分数的基本性质,方程中0.4x+0.90.5的分子、分母都乘以10,0.03+0.02x0.03的分子、分母都乘以100,就能将方程中的所有小数化为整数.

  解:原方程可化为4x+95-3+2x3=1.

  去分母,得3(4x+9)-5(3+2x)=15.

  去括号,得12x+27-15-10x=15.

  移项、合并同类项,得2x=3.

  系数化为1,得x=32.

  4.带多层括号的一元一次方程的解法

  一元一次方程,除个别题外,一般都有几层括号,一般方法是按照“由内到外”的顺序去括号,即先去小括号,再去中括号,最后去大括号.每去一层括号合并同类项一次,以简化运算.

  有时可根据方程的特征,灵活选择去括号的顺序,从而达到快速解题的目的.

  在解具体的某个方程时,要仔细观察方程的特点,根据方程的特点灵活选择解法.

  【例4】233212(x-1)-3-3=3.

  分析:若先去小括号,再去中括号,再去大括号,然后再运算比较麻烦.注意到32×23=1,因而可先去大括号,在去大括号的同时也去掉了中括号,这样既简化了解题过程,又能避开一些常见解题错误的发生.

  解:去大括号,得12(x-1)-3-2=3.

  去小括号,得12x-12-3-2=3.

  移项,得12x=12+3+2+3.

  合并同类项,得12x=172.

  系数化为1,得x=17.

  5.含有字母系数的一元一次方程的解法

  含有字母系数的一元一次方程的解法与一般一元一次方程的解法步骤完全相同:去分母→去括号→移项→合并同类项→系数化为1.要特别注意的是系数化为1时,当未知数的系数是字母时,要分情况讨论.

  关于x的方程ax=b的解的情况:

  ①当a≠0时,方程有唯一的解x=ba;②当a=0,且b=0时,方程有无数解;③当a=0,且b≠0时,方程无解.

  【例5】解关于x的方程3x-2=mx.

  分析:本题中未知数是x,m是已知数,先通过移项、合并同类项把方程变形为ax=b的形式,再讨论.

  解:移项,得3x-mx=2,

  即(3-m)x=2.

  当3-m≠0时,两边都除以3-m,

  得x=23-m.

  当3-m=0时,则有0x=2,此时,方程无解.

  点评:解含有字母系数的方程要不要讨论,关键是看解方程的最后一步,在系数化为1的时候,当未知数的系数是数字时,不用讨论,当未知数的系数含有字母时,必须分情况讨论.

【一元一次方程教案】相关文章:

一元一次方程数学教案04-15

《一元一次方程和它的解法》复习教案01-22

幼儿教案音乐教案05-31

艺术教案中班教案01-08

小班教案起床啦教案11-17

拼音a教案大班教案参考06-08

《海燕》教案07-27

主题教案07-27

郑人买履教案07-28

教案模板【经典】07-30