高中物理知识点总结(优秀)
总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,通过它可以全面地、系统地了解以往的学习和工作情况,因此我们需要回头归纳,写一份总结了。总结一般是怎么写的呢?下面是小编收集整理的高中物理知识点总结,仅供参考,欢迎大家阅读。

高中物理知识点总结1
知识点总结
一、开普勒行星运动定律
(1)、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,
(2)、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,
(3)、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律
1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的'平方成反比、
2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,称为引力常量、
3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、
三、万有引力定律的应用
1、解决天体(卫星)运动问题的基本思路
(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.
(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.
2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.
(1)若已知天体的半径R,则天体的密度ρ=VM=πR34=GT2R33πr3
(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT23π可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度、
3、人造卫星
(1)研究人造卫星的基本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、
(2)卫星的线速度、角速度、周期与半径的关系
①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、
②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、
③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大
(3)人造卫星的超重与失重
①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、
②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下凡是与重力有关的力学现象都会停止发生、
(4)三种宇宙速度
①第一宇宙速度(环绕速度)v1=7.9 km/s.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、若7.9 km/s≤v<11.2 km/s,物体绕地球运行、
②第二宇宙速度(脱离速度)v2=11.2 km/s.这是物体挣脱地球引力束缚的最小发射速度、若11.2 km/s≤v<16.7 km/s,物体绕太阳运行、
③第三宇宙速度(逃逸速度)v3=16.7 km/s这是物体挣脱太阳引力束缚的最小发射速度、若v≥16.7 km/s,物体将脱离太阳系在宇宙空间运行、
题型:
1、求星球表面的重力加速度在星球表面处万有引力等于或近似等于重力,则:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体表面重力加速度的关系为:g2g1=R12R22·M2M1.
2、求某高度处的重力加速度若设离星球表面高h处的重力加速度为gh,则:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.
3、近地卫星与同步卫星
(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/s,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/s2是所有卫星的最大加速度、
(2)地球同步卫星的五个“一定”
①周期一定T=24 h. ②距离地球表面的高度(h)一定③线速度(v)一定④角速度(ω)一定
⑤向心加速度(a)一定
高中物理知识点总结2
一、运动的描述
1、物体模型使用质点,忽略形状和大小;当地球旋转为质点时,地球旋转的大小。准确描述物体位置的变化,运动速度S比t,a用Δv与t比。
2、采用一般公式法,平均速度简单,中间速度法,初始速度零比例法,加上几何图像法,解决良好的运动方法。自由落体是一个例子,初始速度为零a等g。垂直抛出初速,上升最高心有数,上下飞行时间,整个过程均匀减速。中心时刻的速度,平均速度相等;加速度好,ΔS等a T平方。
3、速度决定物体的运动。在速度加速的方向上,同向加速反向减少,垂直转弯莫前冲。
二、力
1、解决力学问题的堡垒很强,受力分析是关键;根据效果分析受力性质力。
2、仔细分析受力,定量计算七种力;重力是否有提示,弹性是根据状态确定的;先有弹性后摩擦,相对运动是基础;万物有重力,电场力无疑是固定的;洛仑兹力安培力,本质上是统一的;相互垂直力最大,平行无力。
3、同一直线定方向,计算结果只是量。如果某个数量的方向不确定,则指出计算结果;两力合力小大,两力成q角夹,平行四边形定法;合力大小随q变化;,只有在最大最小的房间里,多力合力合作。
揭示多力问题状态,解决正交分解,解决三角函数。
4、机械问题方法多,整体隔离和假设;整体只看外力,解决内力隔离;整体状态相同,否则隔离多;即使状态不同,整体牛二也可以做;假设某种力是否有,根据计算确定;极限法把握临界状态,程序法按顺序进行;正交分解选择坐标,轴上矢量尽可能多。
三、牛顿运动定律
1、F等ma,由于力,牛顿二定律产生加速。
与a方向相同的合力,速度变量定a方向,a变小的u可以大,只要a与u同向。
2、N、T等力是视重,mg乘积是实重;超重失重,其中不变就是实重;加速上升是超重,减速下降也是超重;失重由加减升定,完全失重重重零。
四、曲线运动,万有引力
1、运动轨迹是曲线,向心力是条件,曲线运动速度变化,方向是切线。
2、向心力圆周运动,供需关系在心,径向合力提供充足,需要mu平方比R,mrw也需要平方,供需平衡不离心。
3、万有重力因质量而存在于世界上的一切中,都是因为天体质量大,万有重力显示神奇的力量。卫星绕着天体行走,运动速度快的卫星由距离决定。距离越近越快,距离越远越慢。同步卫星速度固定,定点赤道上空行驶。
五、机械能和能量
1、确定状态找动能,分析过程找力功,加上正负功,动能增量与之相同。
2、明确两态机械能,再看工艺力,重力外功为零,初态末态能量相同。
3、确定状态,寻找量能,然后看过程力。如果你有功,你可以改变它。初态末态能量相同。
六、电场〖选修3——1〗
1、库仑定律电荷力,万有引力引场力,像孪生兄弟,kQq与r平方比。
2、电荷周围有电场,F比q定义场强。KQ比r2点电荷,U均强电场为均强电场。
电场强度为矢量,正电荷受力定向。描述电场用场线,密度弱,强。
场能性质为电势,场线方向电势下降。场力做功是qU,动能定理不能忘记。
4、电场中有等势面,垂直画场线。方向由高到低,面密线密。
七、恒定电流〖选修3—1〗
1、当电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。
正荷流向定向,串电流表测量。电源外部正流负,从负到严重内部。
2、电阻定律三个因素,温度不变,控制变量讨论,r l比s等电阻。
电流做功U I t,电热I平方R t 。电功率,W比t,电压乘电流也是如此。
3、基本电路串联,分压分流要清晰。复杂电路动脑,等效电路是关键。
4、关闭部分路、外电路和内电路,遵循欧姆定律。
除总阻电流外,路端电压内压降和等电势。
八、磁场〖选修3—1〗
1、磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定方向。
2、F比I l是场强,φ等B S磁通量,磁通密度φ比S,磁场强度的名称。
3、BIL注意相互垂直的安培力。
4、洛仑兹力安培力,力向左甩,别忘了。
九、电磁感应〖选修3—2〗
1、电磁感应磁生电,磁通变化是条件。电路闭合有电流,电路断开是电源。感应电势大小,磁通变化率知道。
2、楞次定律方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3、楞次定律是抽象的。我们真正理解,从三个方面来看,它阻碍了磁通量的增减。相对运动受到抵抗。如果我们想阻止自感电流,我们应该保持能量。楞次先看原磁场。感应磁场的方向取决于磁通量的`增减。安培定律知道i向。
十、交流电〖选修3—2〗
1、均匀强磁场有线圈,旋转产生交流电。电流电压电势,变化规律为弦线。
中性面计时为正弦,平行面计时为余弦。
2、NBSω以热量计算最大值和有效值。
3、变压器用于交流,不能使用恒定电流。
理想变压器,初级变压器U I值,次级U I相等是原则。
电压比,与匝数比成正比;电流比,反比匝数比。
采用变压比,若要求某个匝数,化为匝伏比,便于计算。
远程输电,升压降流,否则消耗大,用户后降压。
十一、气态方程〖选修3—3〗
研究气体质量,确定状态,找到参数。绝对温度高T,体积是体积。
对封闭物进行压力分析,牛顿定律帮助您。状态参数要找准,PV比T是恒量。
十二、热力学定律
1、第一定律热力学,能量守恒,感觉良好。内能变化等多少,热量不能少。
正负符号要准确,收支要理解。内部工作和吸热,内部能量增加正值;外部工作和放热,内部能量减少负值。
2、热力学第二定律,热传递不可逆,功转热和热转功,方向性不逆。
机械振动〖选修3——4〗
1、记住简谐振动,O为起点算位移,回复力的方向是指始终平衡位置,大小与位移成正比,平衡位置u大极。
2、O点对称别忘了,振动强度是振幅,振动速度是周期,一周期4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。
长行到质感摆,单摆有等时性。
3、振动图像描述方向,从底到顶,从顶到底;振动图像描述位移,顶点底点大位移,正负符号指向。
高中物理必背知识点
光的本性
1、两种理论:颗粒说(牛顿)、波动说(惠更斯)。
2、双缝干涉:中间为亮条纹;亮条纹位置:=n;暗条纹位置:=(2n 1)/2(n=0、1、2、3、、、、);条纹间距{:路程差(光程差);:光的波长;/2:光。半波长;d两条狭缝之间的距离;l:挡板与屏间的距离}。
3、光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关。根据频率从低到高的顺序,光的颜色是:红色、橙色、黄色、绿色、蓝色、靛蓝和紫色(助记:紫色频率大,波长小)。
4、膜干扰:增透膜厚度为绿光在膜中波长的1/4,即增透膜厚度d=/4。
5、光衍射:光在无障碍物的均匀介质中沿直线传播。当障碍物的大小远大于光的波长时,光衍射现象不明显,可视为直线传播,否则不能视为直线传播。
6、光偏振:光偏振表明光是横波。
7、光的电磁说:光的本质是一种电磁波。电磁波谱(根据波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线和射线。红外线、紫外线和线伦琴射线的发现和特性、生成机制和实际应用。
8、光子说,光子的能量E=h {h:普朗克常量=6.6310—34J。s,:光的频率}。
9、爱因斯坦光电效应方程:mVm2/2=h—W {mVm2/2:光电子初动能,h:光子能量,W:金属逸出功}。
必考公式
动力学(运动和力学)
1、牛顿第一运动定律(惯性定律):物体具有惯性,始终保持匀速直线运动或静止,直到有外力迫使它改变为止
2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3、牛顿第三运动定律:F=—F′。{负号表示方向相反,F、F′。各自作用于对方,平衡力反作用力的区别,实际应用:反冲运动}
4、共点力平衡F合=0,推广{正交分解法,三力汇交原理}
5、超重:FN>G,失重:FNr}
6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播波长;波速由介质本身决定}
7、声波波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波为纵波)
8、明显生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸小于波长,或差异不大
9、波干扰条件:两列波频率相同(相差恒定,振幅相近,振动方向相同)
10、多普勒效应:由于波源与观察者之间的相互运动,波源的发射频率与接收频率不同{相互接近,接收频率增加,反之亦然。
牛顿运动定律
1、F等ma,由于力,牛顿二定律产生加速。
与a方向相同的合力,速度变量定a方向,a如果变小,u可以变大,只要a和u同向。
2、N、T等力是视重,mg乘积是实重。超重重视重,其中不变就是实重。加速上升是超重,减速下降也是超重。失重取决于加减,完全失重
曲线运动,万有引力
1、运动轨迹是曲线,向心力是条件,曲线运动速度变化,方向是切线。
2、向心力圆周运动,供需关系在心,径向合力提供充足,需要mu平方比R,mrw也需要平方,供需平衡不离心。
3、万有重力因质量而存在于世界上的一切中,都是因为天体质量大,万有重力显示神奇的力量。卫星绕着天体行走,运动速度快的卫星由距离决定。距离越近越快,距离越远越慢。同步卫星速度固定,定点赤道上空行驶。
高中物理考试公式:机械能和能量
1、确定状态找动能,分析过程找力功,加上正负功,动能增量与之相同。
2、明确两态机械能,再看工艺力,重力外功为零,初态末态能量相同。
3、确定状态,寻找量能,然后看过程力。如果你有功,你可以改变它。初态末态能量相同。
直线运动
机械运动:一个物体相对于其他物体的位置变化,称为机械运动。
1、参考系:假设物体不动是为了研究物体的运动。又称参考(参考不一定静止)。
2、质量:只考虑物体的质量,不考虑物体的大小和形状。
(1)质感是理想化模型。
(2)将物体视为质点的条件:物体的形状和大小可以忽略不计时。
例如:研究地球绕太阳运动,火车从北京到上海。
3、时间间隔:在表示时间的数轴上,时间间隔是一点,时间间隔是一线段。
例如:5点正,9点,7点30是时间间隔,45分钟,3小时是时间间隔。
4、位移:从起点到终点的相线段,位移是矢量,用相线段表示。距离:描述质点运动轨迹的曲线。
(1)位移为零,距离不一定为零。距离为零,位移为零。
(2)只有当质点单向直线运动时,质点的位移才等于距离。
(3)国际单位的位移是米,用m表示
5、位移时间图:建立一直角坐标系,横轴表示时间,纵轴表示位移。
(1)匀速直线运动的位移图像是与横轴平行的直线。
(2)匀变速直线运动的位移图像是倾斜直线。
(3)位移图像和横轴夹角的正切值表示速度。夹角越大,速度越大。
6、速度是指质点运动速度的物理量。
(1)物体在某一时刻的速度比瞬时速度快。物体在某一时间的速度称为平均速度。
(2)速度只表示速度的大小,是标量。
7、加速度:描述物体速度变化的物理量。
(1)定义加速度:a=vt—v0/t
(2)加速度与物体的速度无关。
(3)速度大,加速度不一定大。不一定为零。零加速不一定为零。
(4)速度变化等于最终减速。加速度等于速度变化与所需时间的比值(速度变化率)无关。
(5)加速度为矢量,加速度方向与速度变化方向相同。
(6)加速的国际单位是m/s2
高中物理知识点总结3
匀变速直线运动定义
匀变速直线运动是高中物理最基本,同时也是考察做多的一种运动形式。
物体在一条直线上运动,如果在相等的时间内速度的变化量相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
匀变速直线运动图像
在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;对应着加速度与速度方向相同。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动;对应着加速度与速度方向相反。
做匀变速直线运动的前提条件
物体到底在满足什么前提下才能做匀变速直线运动呢?
这个前提条件,主要是对比曲线运动的前提条件来说的。物体作匀变速直线运动须同时符合下述两条:
1,受恒外力作用(保证加速度方向大小不变);
2,合外力与初速度在同一直线上(保证物体运动方向不变)。
当合外力的方向与物体运动方向一致时,为匀加速直线运动;当合外力方向与物体运动方向相反时,为匀减速直线运动。
匀变速直线运动的公式总结
匀变速直线运动有四个最基本公式,分别如下:
(1)匀变速直线运动速度与时间的关系公式
vt=v0+at
(2)匀变速直线运动位移与时间的关系公式
x=v0t+1/2at2
(3)匀变速直线运动位移与速度的关系公式
vt2-v02=2ax
(4)位移与平均速度的关系公式
x=(vt+v0)·t/2
匀变速直线运动公式使用与选择
一般来说,题目中含有t的时候,优先考虑的是第一个、第二个方程。
题目没有时间t时,优先考虑的是第三个方程(位移和速度关系)。
从上述的四个公式中不难看出,研究匀变速直线运动主要是研究五个物理量:s、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。
只要其中三个物理量确定之后,另外两个就确定了。
每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。
如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。例如:在忽略空气阻力的条件下,竖直上抛物体的上升、回落过程对照:最小速度、加速度大小、位移大小相同,因此经历时间和速度大小一定相同。
以上五个物理量中,除时间t外,s、v0、vt、a这四个量都是矢量。
一般做题的过程中选定v0的方向为正方向,以t=0时刻的位移为零,这时s、vt和a的正负就都有了确定的物理意义。当然,这是王尚个人的意见,有的老师喜欢规定a的方向为正方向,这也是可以的。正方向的规定并不严格,但是我们在运用上述四个公式的时候,必须带入矢量进行运算,否则就很容易导致计算错误。
匀变速直线运动中几个常用的'推论
在打点计时器及其纸带数据处理的实验中,我们用公式Δs=aT2来求加速度。
这说明任意相邻相等时间内的位移之差相等。这个结论可以推广位:sm-sn=(m-n)aT2;
某段时间的中间时刻的即时速度等于该段时间内的平均速度,这个问题也总是出现在打点计时器的实验题中,大家要注意。
提醒大家的是,某段位移的中间位置的即时速度不小于该段位移内的平均速度。
匀变速直线运动特例:自由落体运动
自由落体运动是一种常见且常考的运动模式,是一种特殊的匀变速直线运动。这种运动的特点是初速度为零,加速度为g的运动模式。
地球表面附近的上空可看作是恒定的重力场.如不考虑大气阻力,在该区域内的自由落体运动是匀加速直线运动.其加速度恒等于重力加速度g。
虽然地球的引力和物体到地球中心距离的平方成反比,但地球的半径远大于自由落体所经过的路程,所以引力在地面附近可看作是不变的,自由落体的加速度即是一个不变的常量.
自由落体运动,是初速为零的匀加速直线运动。
初速度为零的匀变速直线运动规律
前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……
第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比1:3:5:……:(2n-1)。
通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比t1:t2:……:tn=1:√2:√3……:√n。
对末速为零的匀变速直线运动,同样也可以类比运用这些规律。
高中物理知识点总结4
电学是中考的重要内容,每年中考电学都有30多分,电学也是学生掌握比较不好的部分,中考的压轴题也都在电学。因此,复习好电学,将是取胜中考的关键。下面,我把我在电学复习上的一些做法和体会和大家一起探讨、交流。
一、课标要求
中考物理命题依据:《全日制义务教育物理课程标准(实验稿)》和《20xx年福建省初中毕业生学业考试大纲》为依据,结合我市初中物理教学实际情况进行命题。
课标对电学的要求主要分布在电磁能、电和磁以及能量、能量的转化和转移。
(一)电磁能
1.从能量转化的角度认识电源和用电器的作用。(电学69)(括号标注为20xx年泉州市中考物理考试说明对应考点,下同)
2.通过实验探究电流、电压和电阻的关系。理解欧姆定律,并能进行简单计算。(电学62、63)3.会读、会画简单的电路图。能连接简单的串联电路和并联电路。能说出生活、生产中采用简单串联或并联的实例。(电学58、59、60)
4.会使用电流表和电压表。(电学61)
5.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。(电学66)
6.通过实验探究,知道在电流一定时,导体消耗的电功率与导体的电阻成正比。(电学67、68)7.了解家庭电路和安全用电知识。有安全用电的意识。(电学64、65)
(二)电和磁
1.通过实验,探究通电螺线管外部磁场的方向。(电学70)
2.通过实验,了解通电导线在磁场中会受到力的作用,力的方向与电流及磁场的方向都有关系。(电学71)
3.通过实验,探究导体在磁场中运动时产生感应电流的条件。(电学73)4.知道光是电磁波。知道电磁波在真空中的传播速度。(信息、材料、与能量74)5.了解电磁波的应用及其对人类生活和社会发展的影响。(信息、材料、与能量75)
(三)能量、能量的转化和转移
1.结合实例认识功的概念。知道做功的过程就是能量转化或转移的过程。(力学26)2.结合实例理解功率的概念。了解功率在实际中的应用。(力学27、28)
20xx年泉州市中考物理考试说明和课程标准的要求是一致的,容易理解,因此,可以把重点放在学习和研究泉州市中考物理考试说明上。
20xx年泉州市初中毕业、升学考试物理考试说明(电学部分)
考试内容58.会读、会画简单电路图。电59.能连接简单的串联电路和并联电路。路60.能说出生活、生产中采用简单串联或并联电路的实例。61.会使用电流表和电压表。探究电路62.通过实验,探究电流、电压和电阻的关系。63.理解欧姆定律,并能进行简单计算。64.了解家庭电路和安全用电知识。65.有安全用电的意识。要求BCACDBAD电电功率学66.理解电功率和电流、电压之间的关系,并能进行简单计算。能区分用电器的额定功率和实际功率。67.通过实验,探究在电流一定时,导体消耗的电功率与导体电阻的关系。68.知道在电流一定时,导体消耗的电功率与导体的电阻成正比。69.从能量转化的角度认识电源和用电器的作用。BDAADADD电70.通过实验,探究通电螺线管外部磁场的方向。和71.通过实验,了解通电导线在磁场中会受到力的作用,力的`方磁向与电流及磁场的方向都有关系。72.能用实验证实电磁相互作用。73.通过实验,探究导体在磁场中运动时产生感应电流的条件。
二、中考呈现考题以填空、作图、选择、简答、实验与探究、计算题形式出现,总分30分左右,实验与探究、计算题所占分数较大。
历届中考电学所占的分数05年中考28.5分06年中考31.5分07年中考32分
三、中考预期
预期08年的中考,电学考试的内容会保持相对稳定,稳中有变。欧姆定律、电功、电功率、电流表和电压表以及滑动变阻器的使用仍是考试的重点。07年未出现的考点,今年很有可能考,07年出现的一些考点,今年会变化考试题型考,比如,把选择题变成填空题。当然,这只是预期,我们要做好充分、全面的复习。四、复习建议
1、认真研究08年中考考试说明、历届(05-07年)中考试题、市质检卷、复习指南。考试说明是命题的依据之一;市质检卷是中考的“风向标”,从中可以感受今年中考的一些信息;从历届中考试题中可以找出中考命题的方向、规律和重点;复习指南是复习指导书。因此,必须认真学习和研究。
2、重视对物理基础知识和基本技能的教学,加强物理知识与生活实际的联系。
基础知识和基本技能是中考命题的重点内容。物理的基本规律和基本原理是学好物理的基础,在教学中,要注意物理概念、物理规律的本质特征,要注重知识的形成过程,培养学生从实验观察、分析和总结中形成物理要领和物理规律的能力。
中考命题加强联系生活实际。物理源于生活,在教学中注意引导学生善于观察,发现生活中蕴涵的物理知识。坚持学以致用,加强理论联系实际,提高学生灵活运用物理知识分析解决问题的能力。同时,也能提高学生学习的兴趣。
3、加强实验、科学探究和计算的教学,重视对实验方法和实验过程的教学。电学实验、计算题是中考的重点。
历届中考电学实验、计算占、实验方法占的分数
06年中考07年中考
2
实验10分11分计算12分14分实验方法3分实验考点:主要是测小灯泡电功率、小灯泡电阻。
计算考点:主要是电功、电功率、欧姆定律、串、并联电路电流、电压的关系。
在教学中,要注重观察能力、分析能力、操作能力、科学探究能力、科学方法和归纳能力的教学;重视电功、电功率、欧姆定律、串、并联电路电流、电压的关系的计算的教学。
4、精选练习,加强审题、解题方法的指导。
要针对考点和历届中考规律选择有代表性、难度适宜的试题,供学生练习。讲评练习要对审题和解题方法加强指导,培养学生良好的审题习惯,提高审题能力,加强学生解题规范化的训练,重视学生的物理语言表达能力的提高。
5、激发兴趣,提高复习效率。
在复习阶段,学生的学习负担重,学习压力大,整天做题,容易出现“复习疲劳综合症”。因此,在复习课上,要积极创设一些与教学内容密切相关的问题情境和联系生活实际的题目吸引学生的注意力,激发学生的复习兴趣;注意调整好学生的心理状态,把握节奏,愉快复习,提高复习效率。
总之,应当在新的课程理念的指导下,认认真真地对待复习工作,在复习中充分理解改革与继承的关系,注意改变学科本位观念,既关注社会热点,也关注中考动向,科学规划,稳步推进,努力使复习工作取得更大的成效。谢谢大家!
高中物理知识点总结5
知识点:力和运动
受力分析、物体的平衡及其条件,是每年必考知识点。
预计在20xx年高考中,本专题内容仍然是高考命题的重点和热点,从近几年的试题难度看,本专题单独命题,难度可能不大,重在对基础知识与基本应用的考查,其中卫星导航、航天工程、宇宙探测、体育运动、科技与生活热点问题要特别关注。
知识点:动量和能量
安徽省高考对本专题的知识点考查频率非常高,每年必考,对动能定理、机械能守恒定律、功能关系考查难度较大。
“动量和能量观点是贯穿整个物理学最基本的观点,动量守恒定律、能量守恒定律是自然界中普遍适用的基本规律,涉及面广、综合性强、能力要求高,多年的压轴题均与本专题知识有关。”杨坤预计,在20xx年高考中,会继续延续近两年的命题特点,一种可能是以功——功率、动能定理和机械能守恒定律为考查热点,主要以选择题的形式出现,考查考生对基本概念、规律的掌握情况和初步应用的能力。另一种可能是与牛顿运动定律、曲线运动、电场和电磁感应等知识综合起来考查,题型以计算题为主。考题紧密联系生产生活、现代科技等问题,如传送带的功率消耗、站台的节能设计、弹簧中的能量、碰撞中的动量守恒问题等。
知识点:带电粒子在电场和磁场中的运动
从历年来试题的难度上看,大多属于中等难度和较难的题,考题常以科学技术的具体问题为背景,考查从实际问题中获取并处理信息,解决实际问题的能力。
计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的.运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。
“20xx年高考理综物理试题仍将突出对电场和磁场中运动的考查,考查形式既可以是选择题也可以是计算题,选择题用来考查场的描述和性质、场力。” 杨坤分析,计算题主要考查带电粒子在电场、磁场中的运动和在复合场中的运动,特别是带电粒子在有界磁场、组合场中的运动,涉及运动轨迹的几何分析和临界分析,考查的可能性较大。其中电场和磁场知识与生产技术、生活实际、科学研究相结合,如示波管、质谱仪、回旋加速器、速度选择器和磁流体发电机等物理模型的应用问题要特别注意。
知识点:电磁感应和电路的分析、计算
在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。
考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题。
从近四年高考试卷知识点分布来看,高考对本专题的内容考查频率比较高,特别是电磁感应部分,每年必考。“对本专题知识点的考查,安徽省高考试题常以选择题的形式出现,但也有以计算题的形式出现的。”杨坤分析,对电路的考查则经常是与实验考查相结合,对串并联电路考查较浅,对交流电的考查相对来说较少而且偏易,对电磁感应的考查相对来说难度偏大,而且经常与其他知识点进行综合考查,不仅考查考生对基础知识和基本规律的掌握,还考查考生对基础知识和基本规律的理解与应用。
“预计在20xx年高考中对本专题知识的考查可能是与其他知识点进行综合考查,突出考查电磁感应、电路等部分内容。”杨坤老师强调,考查的热点内容可能是滑轨类问题、线框穿越有界匀强磁场问题、电磁感应图像问题和电磁感应中的能量问题,“在考试说明的题例中增加了滑轨类问题的实例,这或许是一个信号,希望能引起大家的注意。”
高中物理知识点总结6
知识点概述
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。
知识点总结
一、能量的转化与守恒
1.化学能:由于化学反应,物质的分子结构变化而产生的能量。
2.核能:由于核反应,物质的原子结构发生变化而产生的能量。
3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。
●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。
即
E机械能1+E其它1=E机械能2+E其它2
●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。
二、能源与社会
1.可再生能源:可以长期提供或可以再生的能源。
2.不可再生能源:一旦消耗就很难再生的能源。
3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。
三、开发新能源
1.太阳能
2.核能
3.核能发电
4、其它新能源:地热能、潮汐能、风能。
能源的分类和能量的转化
能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。
【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的.能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。
【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。
【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的1.3万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。
以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。
物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:
△E=Q+W
其中△E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:
△E──(+)体系内能增加, (-)体系内能体系减少;
Q──(+)体系吸收热量, (-)体系放出能量;
W──(+)外界对体系做功, (-)体系对外界做功。
例如1.00 g乙醇在78.3℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为63.2J,这是体系对外界所做的功,应为负值,所以该体系内能的变化△E=[854+(- 63.2)]J=+791J,△E为正值,即体系内能增加了791J。
能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。
高中物理知识点总结7
牛顿第一定律:
(1)内容:所有物体始终保持匀速直线运动或静止,直到有外力迫使它改变为止.
(2)理解:
①它表明所有物体都有惯性,惯性是物体的固有性质.质量是物体惯性的量度(惯性与物体的速度、应力和运动状态无关)。
②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)而不是维持运动的原因。
③它是通过理想实验获得的,不能通过实际实验来验证。
牛顿第二定律:
内容:物体的加速度a与物体的外力F成正比,与物体的质量m成正比,加速度方向与外力相同。
理解:
①瞬时性:力和加速度同时产生、变化和消失。
②矢量:加速度的方向与外力相同。
③同体性:合外力、质量和加速度是针对同一对象(同一研究对象)
④同一性:统一使用外力、质量和加速度的单位SI制主单位⑤相对性:加速度相对于惯性参考系。
三、牛顿第三定律:
(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。
(2)理解:
①同时作用力和反作用力.它们同时产生,同时改变,同时消失,而不是先有力,然后有反应力。
②反作用力的性质与反作用力相同.也就是说,作用力和反作用力于同一性质的力。
③力与反作用力的相互依赖性:它们是相互依存的前提,相互依存。
④不可叠加的.作用力和反作用力.作用力和反作用力分别作用于两个不同的物体,产生各自的效果,不能要求它们的合力,两种力的效果不能相互抵消。
牛顿运动定律的适用范围:
牛顿运动定律建立了宏观物体的低速运动(运动速度远低于光速),但牛顿运动定律不适用于物体的高速运动(运动速度接近光速)和微粒运动,应采用相对论观点和量子力学理论。
易错现象:
(1)误认为惯性与物体的速度有关,惯性越大,惯性越小;另一个错误是惯性和力是相同的概念。
(2)不能正确利用力与运动的关系来分析运动过程中速度和加速度的变化。
(3)物体运动的加速度不能正确应用于轻绳、轻弹簧、轻杆等理想模型。
5、力:
力是物体之间的相互作用,强度必须是施力物体和受力物体。力的大小、方向和作用点的三个要素。用向线段的三个要素表示的方法称力图。
根据力命名的不同依据,力可以分为
①按性质命名的力(如重力、弹性、摩擦力、分子力、电磁力等。
②按效果命名的力(如拉力、压力、支撑、动力、阻力等)。
力的作用效果:
①形变;②改变运动状态。
6、重力:
由于地球的吸引,物体的力。重力的大小G=mg,方向垂直向下。作用点称为物体的重心;重心的位置与物体的质量分布和形状有关。分布均匀,形状规则的物体的重心在几何中心。悬挂法可以确定薄板物体的重心。
注:重力是万有重力的一种分力,另一种分力提供了物体随地球自转所需的向心力。在两极上,重力等于万有重力。一般来说,重力等于万有重力,因为重力远大于向心力。
7、弹力:
(1)内容:发生变形的物体会对与它接触并使其变形的物体产生力,称为弹性。
(2)条件:①接触;②变形。但物体的变形不能超过弹性极限。
(3)弹性的方向与产生弹性的变形方向相反。(平面接触面产生的弹性垂直于接触面;曲面接触面产生的弹性垂直于过研究点曲面的截面;点面接触产生的弹性垂直于表面,绳子产生的弹性沿绳子所在的直线垂直于表面。
(4)大小:
①弹簧的弹性由F=kx计算,②一般来说,弹性的大小与物体同时受到的其他力和物体的运动状态有关,应根据平衡条件或牛顿定律确定。
8、动量
(1)冲量:I=Ft冲量是矢量,方向与力相同。
(2)动量:p=mv动量也是矢量,方向与运动方向相同。
(3)动量定律:F合=mvt–mv0
9、机械能
功:(1)W=Fs cos(只能用于恒力,物体直线运动)
(2)W=pt(此处的“p必须是平均功率)
(3)W总=△Ek(动能定律)
功率:(1)p=W/t(平均功率只能用于计算)
(2)p=Fv(平均功率平均功率,也可计算瞬时功率)
10、动能:Ek=mv2动能为标量.
11.重力势能:Ep=mgh重力势能也是标量,h指物体重心与参考平面的垂直距离。
12.动能定理:F合s=mv-mv
13、机械能守恒定律:mv mgh1=mv mgh2
对匀速圆周运动的描述:
①.定义线速:v=(s指弧长或距离,不是位移
②.定义角速
③.线速与周期的关系
④.角速与周期的关系
⑤.线速与角速的关系:v=r
⑥.向心加速度
(1)向心力公式:F=ma
(2)向心力是物体匀速圆周运动的外力。在计算向心力时,必须以指向圆心的方向为正方向。向心力的作用是改变运动的方向,而不是运动的速度。向心力总是不工作,所以它不能改变物体的动能,但它可以改变物体的动量。
高中物理知识点总结8
1、磁现象:
磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。
磁体:具有磁性的物体,叫做磁体。
磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;
②来源:天然磁体(磁铁矿石)、人造磁体;
③保持磁性的时间长短:硬磁体(永磁体)、软磁体。
磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。
磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。
磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。
无论磁体被摔碎成几块,每一块都有两个磁极。
磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。
钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。
2、磁场:
磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。
磁场的基本性质:对放入其中的磁体产生磁力的作用。
磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。
磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:
①磁感线是假想的`曲线,本身并不存在;
②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;
③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;
3、地磁场:
地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。
指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。
地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。
高中物理知识点总结9
一、第一章静电场
1、电荷量:电荷的多少叫电荷量,用字母Q或q表示。(元电荷常用符号e表示,e=1.6×10-19C)。
自然界只存在两种电荷:正电荷和负电荷。同号电荷相互排斥,异号电荷相互吸引。
2、点电荷:当本身线度比电荷间的距离小很多,研究相互作用时,该带电体的形状可忽略,相当于一个带电的点,叫点电荷。
3、库仑定律:真空中两个静止的点电荷之间的作用力与这两个电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着这两个点电荷的连线。公式:,N﹒m2/C2。
4、电场力(静电力):电场对放入其中的电荷的作用力称为电场力。
5、电场强度:放入电场中一点的电荷所受的电场力跟电荷量的比值。
(1)公式:(N/C)
(2)点电荷的场强公式:
(3)场强的方向:正电荷(负电荷)受的电场力方向与该点场强方向相同(相反)。
6、电场线:用来描述电场的可以模拟但不真实存在的线。
7、电场线的性质:
(1)电场线起始于正电荷或无穷远,终止于无穷远或负电荷;
(2)任何两条电场线不会相交;
(3)静电场中,电场线不形成闭合线;
(4)电场线的疏密代表场强强弱。
8、匀强电场:场强大小和方向都相同的电场叫匀强电场。电场线相互平行且均匀分布时表明是匀强电场。
9、电势:电荷在电场中某一点的电势能与它电荷量的比值。
公式:,10、等势面特点:
(1)电场线与等势面垂直,(2)沿等势面移动电荷,静电力不做功。
11、电势差:,(电势差的正负表示两点间电势的高低)
12、电势差与静电力做功:
表示A、B两点的电势差在数值上等于单位正电荷从A点移到B点,电场力所做的功。
13、电场力做功与电势能的关系:
当电场力做正功时,电势能减少;电场力做负功时,电势能增加。
14、电势差与电场强度的关系:在匀强电场中,沿电场线方向的两点间的`电势差等于场强与这两点间距离的乘积;场强的大小等于沿场强方向每单位距离上的电势差;沿电场线的方向电势越来越低。
15、
(1)(定义式),(决定式)电容的单位是法拉(F)决定平行板电容器电容大小的因素是两极板的正对面积、两极板的距离以及两极板间的电介质。
(2)对于平行板电容器有关的Q、E、U、C的讨论时要注意两种情况:Ⅰ、保持两板与电源相连,则电容器两极板间的电压U不变。Ⅱ、充电后断开电源,则带电量Q不变
16、带电粒子在电场中运动:
(1)带电粒子在电场中平衡。(二力平衡)
(2)带电粒子的加速:动力学分析及功能关系分析:经常用
(3)带电粒子的偏转:动力学分析:带电粒子以速度V0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动(类平抛运动)。
常用到的公式:,, 二、第二章恒定电流
1、通过导体横截面的电荷量:(元电荷)电流强度的定义:
2、电源电动势:,(非静电力把正电荷从负极移送到正极所做功跟被移送的电荷量的比值)
3、电阻串联、并联:
串联特点:
并联电路特点:
4、
(1)欧姆定律:
(2)电功率:
(3)闭合电路欧姆定律:(上图中R=R1+R2)路端电压:
5、电源热功率:
电源效率:
电功:
电热:
电功率:
(1)对于纯电阻电路:
(2)对于非纯电阻电路:
6、电阻定律:(ρ为导体的电阻率,R与导体材料性质、、导体横截面积、长度有关)
三、第三章磁场
1、安培力:磁场对电流的作用力。方向----用左手定则判定:伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流的方向,那么,拇指所指的方向,就是通电导线在磁场中的受力方向。
2、磁感应强度:磁场中垂直于磁场方向的通电导线所受到的磁场力F与导线长度L、导线中电流I的乘积IL的比值,叫做通电导线所在位置的磁感应强度。条件:磁感应单位是特斯拉(T)
3、洛仑兹力:
(1)洛伦兹力对带电粒子永远不做功,带电粒子在匀强磁场中做匀速圆周运动。
(2)B与方向垂直时,方向:左手定则,处理方法:匀速圆周运动的半径:,周期:
4、磁通量:(适用),单位是韦伯(Wb)
高中物理知识点总结10
01质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.中间时刻速度Vt/2=V平=(Vt+Vo)/2
3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
4.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
02质点的运动:
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f
3.向心加速度a=V2/r=2r=(2/T)2r
4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r
7.角速度与转速的关系=2n(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
3)万有引力
1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
3.天体上的`重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}
03力:
1.重力G=mg (方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}
4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)
高中物理知识点总结11
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(VtVo)/24.末速度Vt=Voat
5.中间位置速度Vs/2=[(Vo2Vt2)/2]1/26.位移s=V平t=Votat2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2Vy2)1/2=[Vo2(gt)2]1/2
合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2πr/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/r=ω2r=(2π/T)2r4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
5.周期与频率:T=1/f6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
3)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地h)2=m4π2(r地h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
1)常见的力
1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2(k=9.0×109N?m2/C2,方向在它们的连线上)
7.电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
2)力的合成与分解
1.同一直线上力的合成同向:F=F1F2,反向:F=F1-F2(F1F2)
2.互成角度力的合成:
F=(F12F222F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FNG,失重:FNG{加速度方向向下,均失重,加速度方向向上,均超重}
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ100;lr}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(3)干涉与衍射是波特有的;
1.动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1m2v2=m1v1′m2v2′
6.弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0ΔEKΔEKm{ΔEK:损失的动能,EKm:损失的最大动能}
8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}
9.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1′=(m1-m2)v1/(m1m2)v2′=2m1v1/(m1m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(Mm)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1EP1=EK2EP2也可以是mv12/2mgh1=mv22/2mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)O0≤α90O做正功;90Oα≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力(1)rr0,f引f斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)rr0,f引f斥,F分子力表现为引力
(4)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律WQ=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W0;温度升高,内能增大ΔU0;吸收热量,Q0
(6)物体的内能是指物体所有的'分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+RxR真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)R真
选用电路条件RxRA[或Rx(RARV)1/2]选用电路条件RxRV[或Rx(RARV)1/2]
12.滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件RpRx便于调节电压的选择条件RpRx
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
高中物理知识点总结12
1.大物体不一定看成质点,小物体不一定看成质点。
2.平动物体可能看不到质点,旋转物体可能看不到质点。
3.参考系不一定是不动的,只是假设是不动的物体。
4.选择不同的参考系可能会有不同的运动,但也可能是相同的。
5.时间轴上的n秒指n秒末。第n秒指的是一段时间,第n秒。第n秒末和第n秒末n
第一秒是同一时刻。
6.忽略位移的矢量性,只强调大小而忽略方向。
7.当物体进行直线运动时,位移的大小不一定等于距离。
8.位移也是相对的。必须选择参考系。当选择不同的参考系时,物体的位移可能会有所不同。
9.打点计时器应在纸带上打出重量合适的小圆点。如果打出短横线,应调整振针与复写纸的高度,以增加一点。
10.使用计时器打点时,先接通电源,待计时器稳定后再释放纸带。
11.使用电火花计时器时,注意正确穿两条白纸带,墨粉纸盘夹在两条纸带之间;使用电磁计时器时,纸带应通过限位孔压在复写纸下。
12.速度一词是一个模糊的总称。它在不同的语境中有不同的含义。一般来说,它指的是四个概念中的一个:瞬时速率、平均速度、瞬时速度和平均速度。我们应该学会根据上下文区分速度的含义。通常,速度主要是指瞬时速度。列式计算通常使用平均速度和平均速度。
13.注重理解速度的矢量性。有些学生受初中理解速度概念的影响,很难接受速度的方向。事实上,速度的方向是物体运动的方向,而初中学到的速度是目前学到的平均速度。
14.平均速度不是平均速度。
15.平均速率不是平均速度。
16.物体速度大,加速度不一定大。
当物体速度为零时,其加速度不一定为零。
18.物体的速度变化很大,加速度不一定很大。
19.正负加速只表示方向,不表示大小。
20.物体的加速度为负,物体不一定减速。
21.当物体加速度减小时,速度可能会增加;当加速度增加时,速度可能会减小。
当物体的速度不变时,加速度不一定为零。
23.物体的加速方向不一定与速度方向相同,也不一定在同一直线上。
24.位移图像不是物体的运动轨迹。
25.解决问题前,找出两个坐标轴代表什么物理量,不要将位移图像与速度图像混淆。
26.图像是曲线,不代表物体做曲线运动。
27.从图像中读取物理量时,要明确数量的大小和方向,特别注意方向。
28.v
-t图中两条线相交的点不是相遇点,而是此时此刻相等。
29.由于空气阻力的影响,人们得出重物下落快的错误结论。
30.严格地说,自由落体运动的物体只受重力的.影响。当空气阻力影响较小时,空气阻力的影响可以忽略不计。
31.自由落体实验记录自由落体轨迹时,对重物的要求是质量大、体积小,只强调质量大或体积小是不准确的。
32.在自由落体运动中,加速度g是已知的,但有时问题中没有指出这一点,我们在解决问题时应该充分利用这一隐含条件。
33.自由落体运动是无空气阻力的理想情况。实际物体的运动有时会受到空气阻力的太大影响。此时,空气阻力不容忽视。例如,在雨滴落下的最后阶段,阻力很大,不能被视为自由落体运动。
34.自由落体的加速通常是
9.8m/s2或10m/s
2.但不是不变的。它随纬度和海拔的变化而变化。
35.自由落体运动开始时有四个重要比例,即初始速度v
0=如果0是成立条件v0≠这四个比例不成立。
36.均匀变速运动的每个公式都是矢量式的,在列方程解决问题时要注意每个物理量的方向。
37.常取初速v
0的方向是正的方向,但这不一定是可取的v0相反的方向是正方向。
38.汽车制动问题应首先判断汽车何时停止运动,不要盲目应用匀减速直线运动公式。
39.找出追及问题的临界条件,如位移关系、速度等。
40.用速度图像解决问题时,要注意图线相交的点是速度相等的点,而不是相遇的点。
拓展阅读:如何学好高中物理?
1、预习
高中物理和初中有很大的区别。无论是知识要求的深度和广度,还是课堂容量,我们都需要在课前了解所学。因此,在每节课之前,花一定的时间(时间长度无限)提前浏览课堂知识,熟悉课堂知识,明确课堂重点,发现理解困难,有针对性地听课;此外,还可以培养自学能力和独立思考能力。
2、上课
课堂是获取知识和学习的重要环节。课堂上应注意三个问题:
(1)主动听课
在教学活动中,应以教师为主导学生为主体,学生是学习的主人,如果学生能根据教师的教学程序积极思考,在理解基本知识的基础上,难点和重点推理思维和接受,积极听,积极思考,努力参与教师的课堂教学,那么,学习效率会很高。
(2)注意课堂要点
要听好课,我们应该善于掌握课堂的要点,在课堂上,我们应该有意识地注意老师讲座的关键内容。经验丰富的教师,总是专注于突出重点,突破困难,到重要地方,或放慢速度,强调;或黑板大纲,仔细解释等;对于困难,我们需要知道预览,然后注意听。简而言之,我们应该听。
(3)听课课和做笔记
有些学生一上课就不停地记忆和写作。结果,他们一节课都没听见。他们不知道老师在这节课上说了什么?那么,如何处理听课和做笔记的关系呢?在我看来,在课堂上,我们应该专注于听课堂,而不是做笔记。笔记中要记住的内容应该是教科书中没有的内容,如课堂重点、课堂难点、课堂疑问、补充结论或例子,而不是教师的所有黑板内容。总之,我们应该有摘要和重点记录。有些学生从不做笔记,这不好,尤其是对高中物理学习。因为我们的记忆是有限的,老师说的是转瞬即逝的,我们对知识的记忆会随着时间的推移而逐渐被遗忘。如果我们不做笔记,我们将来就找不到一些内容。
3、复习
有些学生只要老师布置家庭作业就会立即做,觉得完成家庭作业,完成学习任务,掌握知识,结果是做家庭作业,同时翻教科书,笔记,最后知识没有掌握。如果你能冷静下来,认真思考和复习每节课所学的内容,在此基础上完成作业会事半功倍。心理学研究表明,知识在学习的前两三天被遗忘是最快、最大的。因此,只有及时复习知识,才能减少遗忘,达到巩固知识的目的。
4、作业
在复习的基础上,我们再做作业。做作业有两个目的:一是巩固课堂学习的内容;二是利用课堂知识解决一些具体的实际问题。因此,在做作业时,我们应该认真对待,独立完成,积极思考,注意总结。应明确提问的目的是提高知识掌握水平,避免提问。
高中物理主观题怎么拿高分?
1.简单的文本描述与方程式相结合
有些候选人从头到尾只解决方程,没有必要的文本描述,方程中使用的符号不清楚;有些候选人相反,文本表达太长,如写作文,关键方程没有列出,既延迟了时间,又占据了答案的空间。
2.尽量使用常规方法和通用符号
有些考生在解决问题时不从传统的方法开始,而是贪图简单、方便地使用一些特殊和奇怪的方法。虽然这是正确的,但标记老师很难在短时间内理解。同样,使用一些不常用的符号来表达一些特殊的物理量,标记老师也可能会看错。
3.不要使用综合或连续等式
考生知道:高考评分标准是分步给分,写每个过程对应的方程,只要解释正确,表达正确,就能得到相应的分数;有些学生喜欢写综合或连续等式,评分原则是综合错误,即只要发现综合错误,整个过程就不能得分。
因此,对于无法解决的问题,分步列式也可以得到相应的过程分数,增加得分机会。
4.对于复杂的数值计算问题,最终结果应先解决符号表达,然后代入数值进行计算。
最终结果的表达式占有一定的分数,表达式正确,计算过程错误,只会丢失很少的分数。如果没有结果表达式和计算错误,就有很大的机会失分。
5.解决问题时,必须使用物理量单位符号来规范解决问题
在回答物理问题时,我们必须使用教科书中规定的物理符号来表示所使用的其他符号,如化学元素符号、数学符号等,通常使用它们在化学、数学等学科中的原始一般形式。
高中物理知识点总结13
物体与质点
1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。
2、物体可以看成质点的条件
条件:
①研究的物体上个点的运动情况完全一致。
②物体的线度必须远远的大于它通过的距离。
(1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点
(2)平动的物体可以视为质点
平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。
小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。
参考系
1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。
2、对参考系的`理解:
(1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。
(2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。
(3)比较物体的运动,应该选择同一参考系。
(4)参考系可以是运动的物体,也可以是静止的物体。
小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。
坐标系
1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。
2、坐标系分类:
(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。
(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。
(3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。
高中物理学业水平考知识点总结4
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成
(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
高中物理知识点总结14
高中物理知识点总结:直线运动
一、机械运动:一种物体相对于其它物体的位置变化,称为机械运动。
1.参考系:假设不动的物体用于研究物体运动;也叫参考(参考不一定静止)。
2.质量:只考虑物体的质量,不考虑物体的大小和形状。
(1)质感是理想化模型。
(2)将物体视为质点的条件:物体的形状和大小可以忽略不计时。
例如:研究地球绕太阳运动,火车从北京到上海。
3.时间间隔:在表示时间的数轴上,时间间隔是一点,时间间隔是一线段。
例如:5点正,9点,7点30是时间间隔,45分钟,3小时是时间间隔。
4、位移:从起点到终点的相线段,位移为矢量,用相线段表示;距离:描述质点运动轨迹的曲线。
(1)位移为零,距离不一定为零;距离为零,位移为零。
(2)只有当质点单向直线运动时,质点的位移才等于距离。
(3)国际位移单位为米,以m为代表。
5、位移时间图:建立一直角坐标系,横轴表示时间,纵轴表示位移。
(1)匀速直线运动的位移图像是与横轴平行的直线。
(2)匀变速直线运动的位移图像是倾斜直线。
(3)位移图像和横轴夹角的正切值表示速度;夹角越大,速度越大。
6.速度是指质点运动速度的物理量。
(1)物体在某一时刻的速度比瞬时速度快;物体在某一时间的速度称为平均速度。
(2)速度只表示速度的大小,是标量。
7.加速度:描述物体速度变化的物理量。
(1)定义加速度:a=vt-v0/t。
(2)加速度与物体的速度无关。
(3)高速加速不一定大;零加速不一定为零;零加速不一定为零。
(4)速度变化等于最终减速。加速度等于速度变化与所需时间的比值(速度变化率)无关。
(5)加速度为矢量,加速度方向与速度变化方向相同。
(6)加速的国际单位是m/s2。
二、匀变速直线运动规律:
速度:速度与时间的关系:速度与时间的关系:vt=v0 at。
注:一般来说,我们以初始速度为正方向,当物体加速运动时,a取正值,当物体进行减速运动时,a取负值。
(1)物体中间时刻的瞬时速度等于初速和末速的平均速度。
(2)物体中间时刻的'瞬时速度等于平均速度,等于初速和末速的平均速度。
2.位移:匀变速直线运动位移与时间的关系:s=v0t 1/2at。
注:当物体加速时,a取正值,当物体减速时,a取负值。
3、推论:2as=vt2-v02。
4.两个连续相等时间间隔内作匀变速直线运动的物体位移差等于定植;s2-s1=aT2。
5.初速为零的匀加速直线运动:前1秒,前2秒,??位移与时间的关系是:位移比等于时间的平方比;第一秒、第二秒??位移与时间的关系是:位移比等于奇数比。
三、自由落体运动:只有在重力作用下从高处静止落物的运动。
1、位移公式:h=1/2gt2。
2、速度公式:vt=gt。
3、推论:2gh=vt2。
拓展阅读:高中物理记忆公式
1.处理直线运动的方法
采用一般公式法,平均速度为简法。
初始速度为零比例法。
添加几何图像法,以解决运动的好方法。
自由落体是一个例子,初速为零ag。
中心时刻的速度等于平均速度值。
2.追及
两物同向追击,追上相遇用位移。
最远或最近的速度等关键点。
草图图像方法好,审题分析严格。
3.自由落体运动
只有重力静止,加速度g是定值。
等时位移135,等距时速根号比。
末速用时高度设定,根号下方除以g。
4.追及相遇问题的解决方案
画草图,想场景。
选择对象,构建模型。
分析状态和过程。
找规则,列方程。
检验结果行不行。
5.弹簧振子振动
简和谐运动是最典型的弹簧振子振动。
a随着回复力的变化,方向总是指平衡。
大小位移成正比,位移是指平衡注。
速度与a变化相反,减时增加。
势能相互转化,周期变化,守恒。
(注:平衡位置)
6.求电场强度
求场强,方法多,定义用途最广。
点电电场有公式,平方反比决定。
均强电场最典型,E、U关系d连接。
静电平衡也可以使用,合场强零矢量和。
7.解综合题
解决综合题并不难,审清题意是关键。
好的草图方法,分段处理很常见。
必须注意平衡临界,运动随力变化。
求谁设谁常用,顺藤摸瓜思考。
参与成功,方程数量不能少。
推倒计算要求细心,验算莫忘。
高中物理知识点总结15
力是物体间的相互作用
1.力的国际单位是牛顿,用N表示;
2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3.力的示意图:用一个带箭头的线段表示力的方向;
4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
重力:由于地球对物体的吸引而使物体受到的力;
a.重力不是万有引力而是万有引力的一个分力;
b.重力的方向总是竖直向下的(垂直于水平面向下)
c.测量重力的仪器是弹簧秤;
d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
b.弹力包括:支持力、压力、推力、拉力等等;
c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
d.在弹性限度内弹力跟形变量成正比;F=Kx
摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
d.静摩擦力的大小等于使物体发生相对运动趋势的外力;
合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
a.合力与分力的作用效果相同;
b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;
c.合力大于或等于二分力之差,小于或等于二分力之和;
d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
矢量
矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)
标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)
直线运动
物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;
(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;
(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;
(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;
机械运动:
一物体相对其它物体的位置变化。
1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);
2.质点:只考虑物体的质量、不考虑其大小、形状的物体;
(1)质点是一理想化模型;
(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;
如:研究地球绕太阳运动,火车从北京到上海;
3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;
例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;
4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;
(1)位移为零、路程不一定为零;路程为零,位移一定为零;
(2)只有当质点作单向直线运动时,质点的位移才等于路程;
(3)位移的国际单位是米,用m表示
5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;
(1)匀速直线运动的位移图像是一条与横轴平行的直线;
(2)匀变速直线运动的位移图像是一条倾斜直线;
(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;
6.速度是表示质点运动快慢的物理量
(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;
(2)速率只表示速度的大小,是标量;
7.加速度:是描述物体速度变化快慢的物理量;
(1)加速度的定义式:a=vt-v0/t
(2)加速度的大小与物体速度大小无关;
(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;
(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;
(5)加速度是矢量,加速度的方向和速度变化方向相同;
(6)加速度的国际单位是m/s2
匀变速直线运动
1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at
注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;
(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;
(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;
2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2
注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;
3.推论:2as=vt2-v02
4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2
5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;
自由落体运动
只在重力作用下从高处静止下落的物体所作的运动。
1.位移公式:h=1/2gt2
2.速度公式:vt=gt
3.推论:2gh=vt2
牛顿定律
1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。
a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;
b.力是该变物体速度的原因;
c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)
d力是产生加速度的原因;
2.惯性:物体保持匀速直线运动或静止状态的`性质叫惯性。
a.一切物体都有惯性;
b.惯性的大小由物体的质量唯一决定;
c.惯性是描述物体运动状态改变难易的物理量;
3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。
a.数学表达式:a=F合/m;
b.加速度随力的产生而产生、变化而变化、消失而消失;
c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。
d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;
4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;
a.作用力和反作用力同时产生、同时变化、同时消失;
b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;
曲线运动·万有引力
质点的运动轨迹是曲线的运动
1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向
2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;
3.曲线运动的特点
曲线运动一定是变速运动;
曲线运动的加速度(合外力)与其速度方向不在同一条直线上;
4.力的作用
力的方向与运动方向一致时,力改变速度的大小;
力的方向与运动方向垂直时,力改变速度的方向;
力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;
运动的合成与分解
1.判断和运动的方法:物体实际所作的运动是合运动
2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;
3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;
平抛运动
被水平抛出的物体在在重力作用下所作的运动叫平抛运动。
1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;
2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;
3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;
养成良好的物理学习习惯
第一,要有清晰的学习思路。
首先要做好课前预习,这样就知道自己哪里不会、哪里掌握的不牢,这样,跟着老师的思路学习一遍,就能掌握十之八、九。预习之所以有效,就是因为通过预习理清了学习思路,明确自己的学习目标,在老师的帮助下,就能沿着正确的思路走,达到熟练掌握知识的目的。
第二,深挖课本,提炼精华。
书上有内容的引入,推导,吸取书中的精华。这个过程,就是所谓,“把书读薄了”,然后,再对理解的内容进行扩展,推论,变成自己的理解,这就是所谓“把书读厚了”的过程,在脑子里,书从厚到薄再到厚,就是两次不同层次的深化。
第三,不要忽略复习的影响。
物理作为理科类,知识都是一环扣一环,一定要定时查漏补缺。如果前面的知识有漏洞,这样就很容易影响到后面知识内容的学习。学习之后,可以通过做题,培养解题的感觉,对上课所学知识进行归纳,加深印象。根据艾宾浩斯遗忘曲线,建议在学完知识的两三天后,一般我们可以选择周末,进行知识回顾,真正弄懂所学知识,而且还要学会计算。一旦形成了体系,脑中建立了模型,比如板块模型,带点杆模型,复合场模型。考试中,就信手拈来,行云流水。
第四,结成学习帮扶小组。
和同学一起探讨,一起学习,也能一起进步,通过帮扶小组,不仅能让知识更扎实,同时也丰富自己的学习生活,让学习变得更有趣。
物理学习方法与技巧有哪些
一、培养学习兴趣
爱因斯坦说过:兴趣是最好的老师。作为刚刚向物理学宫迈进的学生,首先需要的是兴趣。自然界万物的运动和变化,以及人们创造的一切,都是我们兴趣的取之不竭的源泉。让我们在自己的心灵中点燃起强烈的求知的火花,以浓厚的兴趣进入物理的大千世界,在学习中体验自己智慧的力量,体验求得知识的欢乐。
学好初中物理其实就是探索实践乃至宇宙的第一步,不论是力学还是电磁学都充满了科学的味道。在我们的周围,大至整个宇宙,小至我们身边,无时无刻不在发生种种的物理现象。只有对物理保持浓厚的学习兴趣,才能真正学好物理。
二、善于思考
没有积极的思考、不可能真正理解物理概念和原理。我们从初中开始,就要养成积极动脑筋想问题的习惯。
要理解和掌握好物理概念,就要研究和思考这个概念是怎样引入的?定义如何?有什么物理意义?例如对于电阻,要搞清楚:根据什么实验事实而引入电阻概念?电阻的定义是什么?它的单位是怎样规定的?怎样测量导体的电阻?等等。
有比较才能鉴别。应用对比法,是我们在学习物理过程中,分清一些概念和规律的区别,使它们不会混淆起来,从而正确地理解这些概念和规律的一种好方法。
三、重视物理实验
实验,在学习物理学中是非常重要的一环,它能加深我们对物理知识的理解和培养能力。在实验中应通过自己动手,边观察、边分析、边总结,解决下面的问题:
1.通过实验,对许多抽象的物理概念和定律有丰富生动的感性认识,从而易于理解。如物质的三态变化,从固态到液态要吸热,晶体熔解时温度不变,这些现象通过苯的熔解实验后,将深信不疑,印象深刻。
2.通过动手操作,更仔细地认识各种物理仪器、装置的构造和性能,知道怎样正确使用常用仪器。物理实验使用的各种基本仪表和装置,就是今后工农业生产和科研中使用的各种仪器装置的基础,今天学会了操作,将来就有了操作的技能基础。
3.在实验中掌握一些基本测量方法。例如测定细小金属丝的直径,采用多绕很多圈来测量的"以大量小"法;在测定未知电阻值时可以用"替代法","比较法";为了减少实验误差进行多次测量求平均值等等。这些实验的基本方法都将大大提高我们的实验能力。
4.在实验中应养成良好的实验习惯。遵守实验室纪律,爱护仪器;实验课前做好预习;实验时认真操作,细心观察,忠实记录,按时完成;保持清洁,做好收尾工作,完成实验报告。养成这些良好的实验习惯和品质,将来才可能成为一个优秀的生产者和科学工作者。
四、课堂听讲是关键
听课是学习物理的关键环节,那么,该怎么听课呢,上课的时候又该听什么,其实大家只需要注意这五点,物理知识基本就能掌握了。
①知识是怎样引出的。
②知识是怎样得来的(注重研究过程)。
③知识内容是什么。
④所学知识概念怎样理解。
⑤所学知识在生活、生产中有什么应用。
五、精读课本
我们所学知识基本上都来自课本,所以通过读书才能对知识的来龙去脉有全面的了解。读书的过程就是对物理知识加深理解的过程。要同时阅读几本参考书,通过对比,对某一知识加深理解。在读书时还应对重点知识、概念、规律、定义、公式在理解的基础上强化记忆。
六、建立知识体系
在读书基础上打破章节界限,按知识条块归类,并建立相关的知识体系,将各知识点之间的内在联系弄清楚,由点到面形成知识网络。建立知识体系的过程也就是提高综合能力的过程,也是使物理复习质量升华的过程。
物理高效复习法简介
首先,要理解基本概念,掌握基本公式。
物理作为理科科目在期末复习过程中要重视基础。如果基础没有打牢,再出色的成绩也是靠不住的,在复习的过程中,我们要把课本上的基本概念、公式、实验在理解的基础上,全部看一遍,对于不完全掌握的知识点你一定要在考试前弄懂、弄会。通常情况下,成绩中等的同学大部分是基础不牢,建议大家将重点放在课本上。
第二,结合错题本进行专项复习
错题本就是汇集了我们一学期所有错题的集合,这里能真实的反映出我们知识的薄弱点在哪里,把错题本上的错题再有选择的做一遍,看一下还错在哪里,然后进行重点修改,这样可以查漏补缺,用最快的速度让自己补齐短板。
专项练习中我们也可以对一些常考的题型进行重点练习,有一些题的题型在变,但是解题思路不变,这样我们就能以不变应万变,不仅能够对所学提醒进行归纳整理,也能帮助我们提升复习效果。
第三,熟悉实验流程,掌握实验原理。
物理是一门实验性非常强的学科,我们在平时的学习、考试中总会遇到这样或者那样的实验,千万不要以为这些实验没用,一个完整的实验要从实验筹划开始、到实验器材准备、实验原理、实验过程、实验结果、实验报告,整个过程都有可能成为考试的考点,因此在期末考试前我们将本学期学到的物理实验进行系统梳理,达到每提到一个实验都会在脑海中形成一个流程,这样实验部分的分数我们就能得到大半。
此外,物理的计算要依赖数学,特别是一些解题方法,和数学有高度的类似,因此,想要学好物理,必须学好数学。
怎么加深对物理实验的理解
一要提前看。在实验之前,我们就要提前通过课本了解实验的目的、用到的器材及使用方法、涉及到的原理,同时要仔细阅读教材上的实验步骤,争取做到离开课本也能做实验。
二要规范做。做实验时,要严格遵守操作流程,严格按照教材的操作步骤认真执行,不能自由发挥,随心所欲。如有安全隐患,要做好安全防范措施。
三要总结好。物理课上真正做实验的机会非常少,所以一定要认真归纳、总结。详细记录实验过程、现象,以及最后得出的实验结论。
目前,初中涉及到的实验有天平测重量、弹簧测力计测力大小、压力与压强的实验、杠杆实验、电流电压的实验、光的折射和反射实验等等,每一个实验都是通过一个物理现象来说明一个物理原理。物理实验中常见的物理实验方法总计有4种,这里为大家简单介绍一下:
1、控制变量法,这是最常见的一种实验方法,通过更改某一个变量,来改变实验结果,从而达到实验目的。
2、图像法,通过制作表格或者是画图的方式,来直观的表示实验过程、结果,比如:电压、电流的实验、或者是压力、摩擦力等实验。
3、转换法,通过对实验现象的转化,变得更加通俗易懂,比如:磁场的实验、分子扩散的实验。
4、类比法,有一些实验如果用其他的事物代替一下会更加的形象,比如:水流VS电流,等效电路等。
【高中物理知识点总结】相关文章:
高中物理知识点总结08-28
高中物理知识点总结10-22
高中物理知识点总结10-14
高中物理知识点总结07-21
高中物理复习知识点总结11-15
关于高中物理的知识点总结11-11
高中物理电学知识点总结12-11
高中物理力学知识点总结07-30
(优)高中物理知识点总结10-30
高中物理必修二知识点总结11-14