高中物理知识点总结15篇[荐]
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可以帮助我们有寻找学习和工作中的规律,不妨让我们认真地完成总结吧。但是总结有什么要求呢?下面是小编整理的高中物理知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
![高中物理知识点总结15篇[荐]](https://p.9136.com/00/l/d6aacab62_2.jpg)
高中物理知识点总结1
电势差
电势差是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。
电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。
电流之所以能够在导线中流动,也是因为在电流中有着高电势和低电势之间的差别。这种差别叫电势差,也叫电压。换句话说。在电路中,任意两点之间的电位差称为这两点的电压。通常用字母V代表电压。
电源是给用电器两端提供电压的装置。
电压的大小可以用电压表(符号:V)测量。
串联电路电压规律:
串联电路两端总电压等于各部分电路两端电压和。
公式:ΣU=U1+U2
并联电路电压规律:
并联电路各支路两端电压相等,且等于电源电压。
公式:ΣU=U1=U2
欧姆定律:U=IR(I为电流,R是电阻)但是这个公式只适用于纯电阻电路。
串联电压之关系,总压等于分压和,U=U1+U2.
并联电压之特点,支压都等电源压,U=U1=U2
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等,雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。
4、防止静电的主要途径:
(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。
(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。
电源和电流
1、电流产生的条件:
(1)导体内有大量自由电荷(金属导体——自由电子;电解质溶液——正负离子;导电气体——正负离子和电子)
(2)导体两端存在电势差(电压)
(3)导体中存在持续电流的条件:是保持导体两端的电势差。
2、电流的方向
电流可以由正电荷的定向移动形成,也可以是负电荷的定向移动形成,也可以是由正负电荷同时定向移动形成。习惯上规定:正电荷定向移动的'方向为电流的方向。
说明:
(1)负电荷沿某一方向运动和等量的正电荷沿相反方向运动产生的效果相同。金属导体中电流的方向与自由电子定向移动方向相反。
(2)电流有方向但电流强度不是矢量。
(3)方向不随时间而改变的电流叫直流;方向和强度都不随时间改变的电流叫做恒定电流。通常所说的直流常常指的是恒定电流。
高中物理知识点总结2
1.大物体不一定看成质点,小物体不一定看成质点。
2.平动物体可能看不到质点,旋转物体可能看不到质点。
3.参考系不一定是不动的,只是假设是不动的物体。
4.选择不同的参考系可能会有不同的运动,但也可能是相同的。
5.时间轴上的n秒指n秒末。第n秒指的是一段时间,第n秒。第n秒末和第n秒末n
第一秒是同一时刻。
6.忽略位移的矢量性,只强调大小而忽略方向。
7.当物体进行直线运动时,位移的大小不一定等于距离。
8.位移也是相对的。必须选择参考系。当选择不同的参考系时,物体的位移可能会有所不同。
9.打点计时器应在纸带上打出重量合适的小圆点。如果打出短横线,应调整振针与复写纸的高度,以增加一点。
10.使用计时器打点时,先接通电源,待计时器稳定后再释放纸带。
11.使用电火花计时器时,注意正确穿两条白纸带,墨粉纸盘夹在两条纸带之间;使用电磁计时器时,纸带应通过限位孔压在复写纸下。
12.速度一词是一个模糊的总称。它在不同的语境中有不同的含义。一般来说,它指的是四个概念中的一个:瞬时速率、平均速度、瞬时速度和平均速度。我们应该学会根据上下文区分速度的含义。通常,速度主要是指瞬时速度。列式计算通常使用平均速度和平均速度。
13.注重理解速度的矢量性。有些学生受初中理解速度概念的影响,很难接受速度的方向。事实上,速度的方向是物体运动的方向,而初中学到的速度是目前学到的平均速度。
14.平均速度不是平均速度。
15.平均速率不是平均速度。
16.物体速度大,加速度不一定大。
当物体速度为零时,其加速度不一定为零。
18.物体的速度变化很大,加速度不一定很大。
19.正负加速只表示方向,不表示大小。
20.物体的加速度为负,物体不一定减速。
21.当物体加速度减小时,速度可能会增加;当加速度增加时,速度可能会减小。
当物体的速度不变时,加速度不一定为零。
23.物体的加速方向不一定与速度方向相同,也不一定在同一直线上。
24.位移图像不是物体的运动轨迹。
25.解决问题前,找出两个坐标轴代表什么物理量,不要将位移图像与速度图像混淆。
26.图像是曲线,不代表物体做曲线运动。
27.从图像中读取物理量时,要明确数量的大小和方向,特别注意方向。
28.v
-t图中两条线相交的点不是相遇点,而是此时此刻相等。
29.由于空气阻力的影响,人们得出重物下落快的错误结论。
30.严格地说,自由落体运动的物体只受重力的影响。当空气阻力影响较小时,空气阻力的影响可以忽略不计。
31.自由落体实验记录自由落体轨迹时,对重物的要求是质量大、体积小,只强调质量大或体积小是不准确的。
32.在自由落体运动中,加速度g是已知的,但有时问题中没有指出这一点,我们在解决问题时应该充分利用这一隐含条件。
33.自由落体运动是无空气阻力的理想情况。实际物体的运动有时会受到空气阻力的太大影响。此时,空气阻力不容忽视。例如,在雨滴落下的最后阶段,阻力很大,不能被视为自由落体运动。
34.自由落体的加速通常是
9.8m/s2或10m/s
2.但不是不变的。它随纬度和海拔的变化而变化。
35.自由落体运动开始时有四个重要比例,即初始速度v
0=如果0是成立条件v0≠这四个比例不成立。
36.均匀变速运动的每个公式都是矢量式的,在列方程解决问题时要注意每个物理量的方向。
37.常取初速v
0的方向是正的方向,但这不一定是可取的'v0相反的方向是正方向。
38.汽车制动问题应首先判断汽车何时停止运动,不要盲目应用匀减速直线运动公式。
39.找出追及问题的临界条件,如位移关系、速度等。
40.用速度图像解决问题时,要注意图线相交的点是速度相等的点,而不是相遇的点。
拓展阅读:如何学好高中物理?
1、预习
高中物理和初中有很大的区别。无论是知识要求的深度和广度,还是课堂容量,我们都需要在课前了解所学。因此,在每节课之前,花一定的时间(时间长度无限)提前浏览课堂知识,熟悉课堂知识,明确课堂重点,发现理解困难,有针对性地听课;此外,还可以培养自学能力和独立思考能力。
2、上课
课堂是获取知识和学习的重要环节。课堂上应注意三个问题:
(1)主动听课
在教学活动中,应以教师为主导学生为主体,学生是学习的主人,如果学生能根据教师的教学程序积极思考,在理解基本知识的基础上,难点和重点推理思维和接受,积极听,积极思考,努力参与教师的课堂教学,那么,学习效率会很高。
(2)注意课堂要点
要听好课,我们应该善于掌握课堂的要点,在课堂上,我们应该有意识地注意老师讲座的关键内容。经验丰富的教师,总是专注于突出重点,突破困难,到重要地方,或放慢速度,强调;或黑板大纲,仔细解释等;对于困难,我们需要知道预览,然后注意听。简而言之,我们应该听。
(3)听课课和做笔记
有些学生一上课就不停地记忆和写作。结果,他们一节课都没听见。他们不知道老师在这节课上说了什么?那么,如何处理听课和做笔记的关系呢?在我看来,在课堂上,我们应该专注于听课堂,而不是做笔记。笔记中要记住的内容应该是教科书中没有的内容,如课堂重点、课堂难点、课堂疑问、补充结论或例子,而不是教师的所有黑板内容。总之,我们应该有摘要和重点记录。有些学生从不做笔记,这不好,尤其是对高中物理学习。因为我们的记忆是有限的,老师说的是转瞬即逝的,我们对知识的记忆会随着时间的推移而逐渐被遗忘。如果我们不做笔记,我们将来就找不到一些内容。
3、复习
有些学生只要老师布置家庭作业就会立即做,觉得完成家庭作业,完成学习任务,掌握知识,结果是做家庭作业,同时翻教科书,笔记,最后知识没有掌握。如果你能冷静下来,认真思考和复习每节课所学的内容,在此基础上完成作业会事半功倍。心理学研究表明,知识在学习的前两三天被遗忘是最快、最大的。因此,只有及时复习知识,才能减少遗忘,达到巩固知识的目的。
4、作业
在复习的基础上,我们再做作业。做作业有两个目的:一是巩固课堂学习的内容;二是利用课堂知识解决一些具体的实际问题。因此,在做作业时,我们应该认真对待,独立完成,积极思考,注意总结。应明确提问的目的是提高知识掌握水平,避免提问。
高中物理主观题怎么拿高分?
1.简单的文本描述与方程式相结合
有些候选人从头到尾只解决方程,没有必要的文本描述,方程中使用的符号不清楚;有些候选人相反,文本表达太长,如写作文,关键方程没有列出,既延迟了时间,又占据了答案的空间。
2.尽量使用常规方法和通用符号
有些考生在解决问题时不从传统的方法开始,而是贪图简单、方便地使用一些特殊和奇怪的方法。虽然这是正确的,但标记老师很难在短时间内理解。同样,使用一些不常用的符号来表达一些特殊的物理量,标记老师也可能会看错。
3.不要使用综合或连续等式
考生知道:高考评分标准是分步给分,写每个过程对应的方程,只要解释正确,表达正确,就能得到相应的分数;有些学生喜欢写综合或连续等式,评分原则是综合错误,即只要发现综合错误,整个过程就不能得分。
因此,对于无法解决的问题,分步列式也可以得到相应的过程分数,增加得分机会。
4.对于复杂的数值计算问题,最终结果应先解决符号表达,然后代入数值进行计算。
最终结果的表达式占有一定的分数,表达式正确,计算过程错误,只会丢失很少的分数。如果没有结果表达式和计算错误,就有很大的机会失分。
5.解决问题时,必须使用物理量单位符号来规范解决问题
在回答物理问题时,我们必须使用教科书中规定的物理符号来表示所使用的其他符号,如化学元素符号、数学符号等,通常使用它们在化学、数学等学科中的原始一般形式。
高中物理知识点总结3
(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不行。
(2)摩擦力的方向:跟接触(面相)切,与相对运动或相对运动趋势方向相反。但留意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。
说明:
a、FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、N为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关。
②静摩擦:由物体的平衡条件或牛顿其次定律求解,与正压力无关。
静摩擦力的详细数值可用以下(方法)来计算:一是依据平衡条件,二是依据牛顿其次定律求出合力,然后通过受力分析确定。
(4)留意事项:
a、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成肯定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方
向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
(高一物理)必修1摩擦力基本要求
1、知道静摩擦力的产生条件,会推断静摩擦力的方向。
2、通过试验探究静摩擦力的大小,把握静摩擦力的最大值及变化范围。
3、知道滑动摩擦力的产生条件,会推断滑动摩擦力的方向。
4、会运用公式F=μFN计算滑动摩擦力的大小。
5、知道动摩擦因数无单位,了解动摩擦因数与哪些因素有关。
6、能用二力平衡条件推断静摩擦力的大小和方向。
高中(物理(学习方法))
1、明确学习目的,激发学习爱好
爱好是较好的老师,有了爱好,才情愿学习。情愿学习,才能找到学习的乐趣。有了乐趣,长期坚持,就产生了较稳定的学习爱好—志趣。把学习变成一种自觉的行为,是成长生涯中必不行缺少的一件事。经日积月累,终会有所成效。
2、把握学习策略,擅长整体把握
“整体大于部分之和”,在任何一段材料学习之前,先从整体、宏观去了解其主要内容和方法、结构和思路、内在的规律关系等,再从局部、细节入手,把握各自学问点,明确它们之间的内在联系,并强调应用,在应用中内化、感悟,通过同化和顺应两种方式,丰富同学们的学问结构,建立多节点相连的学问网络。
较后再从整体的角度端详学习过程,对陈述性、程序性和策略性学问能充分的`理解和应用。如“序言”教学设计中我们是先粗读课本,从封面、插图、名目到各章内容、支配题例等,整体上了解高一物理是干什么的,有哪些内容,是如何支配的。然后再说“序言”的内容,我们仍旧是先找出“序言”分几部分,每部分解决的核心问题是什么,该核心问题举了哪些例子等,之后盼望同学们通过序言的学习达到如下共识识:高中物理的有用性、好玩性;有信念学好高中物理;学好物理有法可依。
3、把握学习方法,达到事半功倍
物理学习同其他学问学习一样,大的方面,应把握好预习、听课、复习、作业、反馈、再复习巩固、再练习深化提高等环节。小的方面,要重视听好每一节课和做好每一道题。对教材内容,第一遍读时要细、慢、思、记。仔细研读,明确思路,乐观思索、辩析概念,把握规律,学会应用。做练习,要遵循“读、审、建、构、解、思”六步骤。即拿到一道题后,要读明题意,审清条件,建立联系,构造模型,正确解答,分类(反思)。
对待复习,要做到准时复习,抢在遗忘之前进行。要有效复习,举一反三、纵横联系,留意学问结构的充实,留意技能、技巧的把握。在学习过程,留意合作学习,强调与老师、与同学的合作和沟通,不怕出丑,敢于发表自己见解,勇于质疑,和老师、同学共同理解、共同进步。
对待现实事物和现象,要有问题意识,有意识地从物理学的眼光去端详,在情景之中培育探究精神。重视过程学习,加强情感体验。在学习中还要勤动手、多试验、细观看、善(总结),获得直接(阅历),培育实践力量。
还要留意物理学问和方法与(其它)学科学问与方法的交叉与渗透,相互借鉴,触类旁通,从微小处加以比较和思索,发觉别人所没有发觉的方法,增加创新力量。每个同学都是一个独特的个体,没有一个现成的完全适合自己的学习模式,只有每个人依据自己的性格特点、学习习惯,摸索出一套合适的学习方法,才能提高学习的针对性、实效性。
4、树立学习信念,增加耐挫力量
挑战与机遇并存,困难与盼望同在。每个同学都要树立学好物理的信念,同时要有足够的心理预备,学好物理决不是一蹴而就的。确定有困难,确定受挫折,但要永不言败,永久追求,增加耐挫力量。
要熟悉到学习是一个过程,只要乐观投入,你的学问与技能、情感、态度和价值观都会发生乐观的变化。学习的结果也是多元的,收获也是丰富的。在学习的阶段性评估中,和自己的过去比,学问把握的丰富了,解题方法增多了,感觉自己提高了,从而对自己增加信念;和其他同学比,我有肯定的优势,还有一些不足,精确定位,找准努力方向。要自我激励,不要自我挫败;要接纳自己、宽容自己;自我观赏但不自我沉醉,激励自己更加努力学习,争取更大进步。
高中物理知识点总结4
一、重力,基本相互作用
1、力和力的图示
2、力能改变物体运动状态
3、力能力物体发生形变
4、力是物体与物体之间的相互作用
(1)施力物体
(2)受力物体
(3)力产生一对力
5、力的三要素:大小,方向,作用点
6、重力:由于地球吸引而受的力大小G=mg方向:竖直向下重心:重力的作用点均匀分布、形状规则物体:几何对称中心质量分布不均匀,由质量分布决定重心质量分部均匀,由形状决定重心
7、四种基本作用
(1)万有引力
(2)电磁相互作用
(3)强相互作用
(4)弱相互作用
二、弹力
1、性质:接触力
2、弹性形变:当外力撤去后物体恢复原来的形状
3、弹力产生条件
(1)挤压
(2)发生弹性形变
4、方向:与形变方向相反
5、常见弹力
(1)压力垂直于接触面,指向被压物体
(2)支持力垂直于接触面,指向被支持物体
(3)拉力:沿绳子收缩方向
(4)弹簧弹力方向:可短可长沿弹簧方向与形变方向相反
6、弹力大小计算(胡克定律)F=kx
k劲度系数N/mx伸长量
三、摩擦力产生条件:
1、两个物体接触且粗糙
2、有相对运动或相对运动趋势静摩擦力产生条件:
1、接触面粗糙
2、相对运动趋势
静摩擦力方向:沿着接触面与运动趋势方向相反大小:0≤f≤Fmax滑动摩擦力产生条件:
1、接触面粗糙
2、有相对滑动大小:f=μN
N相互接触时产生的弹力N可能等于G
μ动摩擦因系数没有单位
四、力的合成与分解方法:等效替代
力的`合成:求与两个力或多个力效果相同的一个力
求合力方法:平行四边形定则(合力是以两分力为邻边的平行四边形对角线,对角线长度即合力的大小,方向即合力的方向)合力与分力的关系
1、合力可以比分力大,也可以比分力小
2、夹角θ一定,θ为锐角,两分力增大,合力就增大
3、当两个分力大小一定,夹角增大,合力就增大,夹角增大,合力就减小(0<θ<π)
4、合力最大值F=F1+F2最小值F=|F1-F2|力的分解:已知合力,求替代F的两个力原则:分力与合力遵循平行四边形定则本质:力的合成的逆运算
找分力的方法:
1、确定合力的作用效果
2、形变效果
3、由分力,合力用平行四边形定则连接
4、作图或计算(计算方法:余弦定理)
五、受力分析步骤和方法
1.步骤
(1)研究对象:受力物体
(2)隔离开受力物体
(3)顺序:
①场力(重力,电磁力......)
②弹力:
绳子拉力沿绳子方向
轻弹簧压缩或伸长与形变方向相反轻杆可能沿杆,也可能不沿杆面与面接触优先垂直于面的
③摩擦力
静摩擦力方向
求2.假设
滑动摩擦力方向与相对滑动方向相反或与相对速度相反
④其它力(题中已知力)
(4)检验是否有施力物体
六、摩擦力分析静摩擦力分析
1、条件①接触且粗糙②相对运动趋势
2、大小0≤f≤Fmax
3、方法:
①假设法
②平衡法滑动摩擦力分析
1、接触时粗糙
2、相对滑动
七、补充结论
1.斜面倾角θ
动摩擦因系数μ=tanθ物体在斜面上匀速下滑
μ>tanθ物体保持静止μ<tanθ物体在斜面上加速下滑
2.三力合力最小值
若构成一个三角形则合力为0若不能则F=Fmax-(F1+F2)三力最大值三个力相加
高中物理知识点总结5
一.简谐运动
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:
在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。
3、描述振动的物理量
描述振动的物理量,研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
(1)位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。(2)振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
(3)周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。(4)频率f:振动物体单位时间内完成全振动的次数。
(5)角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。周期、频率、角频率的关系是:。
(6)相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。
4、研究简谐振动规律的几个思路:
(1)用动力学方法研究,受力特征:回复力F=-Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(2)用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。
(3)用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。(4)从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。
5、简谐运动的表达式
振幅A,周期T,相位,初相
6、简谐运动图象描述振动的物理量
1.直接描述量:
①振幅A;②周期T;③任意时刻的位移t。2.间接描述量:
③x—t图线上一点的切线的斜率等于V。3.从振动图象中的x分析有关物理量(v,a,F)
简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x,F,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。
小结:1。简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。2.简谐运动图象反应了物体位移随时间变化的关系。
3.根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。
7、单摆
1单摆周期公式
上述公式是高考要考查的重点内容之一。对周期公式的理解和应用注意以下几个问题:①简谐振动物体的周期和频率是由振动系统本身的条件决定的。②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
例如图1中,三根等长的绳L1、L2、L3共同系住一个密度均匀的小球m,球直径为d,L2、L3与天花板的夹角<30。若摆球在纸面内作小角度的左右摆动,则摆的圆弧的圆心在O1外,故等效摆长为,周期T1=2;若摆球做垂直纸面的小角度摆动,叫摆动圆弧的圆心在O处,故等效摆长为,周期T2=。单摆周期公式中的g,由单摆所在的空间位置决定,还由单摆系统的运动状态决定。所以g也叫等效重力加速度。由可知,地球表面不同位置、不同高度,不同星球表面g值都不相同,因此应求出单摆所在地的等效g值代入公式,即g不一定等于9。8m/s2。单摆系统运动状态不同g值也不相同。例如单摆在向上加速发射的航天飞机内,设加速度为a,此时摆球处于超重状态,沿圆弧切线的回复力变大,摆球质量不变,则重力加速度等效值g=g+a。再比如在轨道上运行的航天飞机内的单摆、摆球完全失重,回复力为零,则重力加速度等效值g=0,周期无穷大,即单摆不摆动了。g还由单摆所处的物理环境决定。如带小电球做成的单摆在竖直方向的匀强电场中,回复力应是重力和竖直的电场合力在圆弧切向方向的分力,所以也有-g的问题。一般情况下g值等于摆球静止在平衡位置时,摆线张力与摆球质量的比值。8、受迫振动和共振Ⅰ
物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。9、机械波横波和纵波横波的图象Ⅰ
机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。横波和纵波:
质点的振动方向与波的'传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。
第二章、机械波
1、机械波的特点:
(1)每一质点都以它的平衡位置为中心做简振振动;后一质点的振动总是落后于带动它的前一质点的振动。(2)波只是传播运动形式(振动)和振动能量,介质并不随波迁移。横波的图象
用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。简谐波的图象是正弦曲线,也叫正弦波
简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个
2、波长、波速和频率(周期)的关系
描述机械波的物理量
(1)波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。
(2)频率f:波的频率由波源决定,在任何介质中频率保持不变。(3)波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。波速与波长和频率的关系:,
3、波的反射和折射波的干涉和衍射Ⅰ
4、惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。
5、根据惠更斯原理,只要知道某一时刻的波阵面,就可以确定下一时刻的波阵面。、波的干涉和衍射相差不多。
衍射:波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。
稳定的干涉现象中,振动加强区和减弱区的空间位置是不变的,加强区的振幅等于两列波振幅之和,减弱区振幅等于两列波振幅之差。判断加强与减弱区域的方法一般有两种:一是画峰谷波形图,峰峰或谷谷相遇增强,峰谷相遇减弱。二是相干波源振动相同时,某点到二波源程波差是波长整数倍时振动增强,是半波长奇数倍时振动减弱。干涉和衍射是波所特有的现象。
6、多普勒效应
1。多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。
2。多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3。多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。
4。多普勒效应的应用:①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红衣现象”,所谓“红衣现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。7、波的反射
1。波遇到障碍物会返回来继续传播,这种现象叫做波的反射.
2。反射定律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。入射角(i)和反射角(i’):入射波的波线与平面法线的夹角i叫做入射角.反射波的波线与平面法线的夹角i’叫做反射角.
反射波的波长、频率、波速都跟入射波相同.波遇到两种介质界面时,总存在反射
8、波的折射
1波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射
折射规律:
(1)。折射角(r):折射波的波线与两介质界面法线的夹角r叫做折射角.
(2)。折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:当入射速度大于折射速度时,折射角折向法线。当入射速度小于折射速度时,折射角折离法线。
当垂直界面入射时,传播方向不改变,属折射中的特例.在波的折射中,波的频率不改变,波速和波长都发生改变.
9、光的折射定律折射率
光的折射定律,也叫斯涅耳定律:入射角的正弦跟折射角的正弦成正比.如果用n来表示这个比例常数,就有
折射率:光从一种介质射入另一种介质时,虽然入射角的正弦跟折射角的正弦之比为一常数n,但是对不同的介质来说,这个常数n是不同的.这个常数n跟介质有关系,是一个反映介质的光学性质的物理量,我们把它叫做介质的折射率.
i是光线在真空中与法线之间的夹角.
r是光线在介质中与法线之间的夹角.光从真空射入某种介质时的折射率,叫做该种介质的绝对折射率,也简称为某种介质的折射率
第三章、电磁波电磁波的传播一、麦克斯韦电磁场理论
1、电磁场理论的核心之一:变化的磁场产生电场
在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场(2)非均匀变化的磁场产生变化电场2、电磁场理论的核心之二:变化的电场产生磁场
麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:(1)均匀变化的电场产生稳定磁场(2)非均匀变化的电场产生变化磁场〖规律总结〗
1、麦克斯韦电磁场理论的理解:恒定的电场不产生磁场恒定的磁场不产生电场
均匀变化的电场在周围空间产生恒定的磁场均匀变化的磁场在周围空间产生恒定的电场振荡电场产生同频率的振荡磁场振荡磁场产生同频率的振荡电场2、电场和磁场的变化关系
二、电磁波
1、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场这个过程可以用下图表达。2、电磁波:
电磁场由发生区域向远处的传播就是电磁波。3、电磁波的特点:
(1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直(2)电磁波可以在真空中传播,速度和光速相同。v=λf(3)电磁波具有波的特性
三、赫兹的电火花
赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象。,他还测量出电磁波和光有相同的速度。这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。
第四章、电磁振荡电磁波的发射和接收1、LC回路振荡电流的产生
先给电容器充电,把能以电场能的形式储存在电容器中。
(1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。
(2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。
接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。电磁波的发射和接收
有效的向外发射电磁波的条件:
(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。
(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。采用什么手段可以有效的向外界发射电磁波?改造振荡电路由闭合电路成开放电路
2、电磁波的接收条件
①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。
②调谐:使接收电路产生电谐振的过程。通过改变电容器电容来改变调谐电路的频率。③检波:从接收到的高频振荡中“检”出所携带的信号。.电磁波谱及其应用Ⅰ
3、光的电磁说
(1)麦克斯韦计算出电磁波传播速度与光速相同,说明光具有电磁本质(2)电磁波谱
电磁波谱无线电波红外线可见光紫外线X射线射线产生机理在振荡电路中,自由电子作周期性运动产生原子的外层电子受到激发产生的
原子的内层电子受到激发后产生的原子核受到激发后产生的
(3)光谱①观察光谱的仪器,分光镜②光谱的分类,产生和特征发射光谱连续光谱产生特征
由炽热的固体、液体和高压气体发光产生的由连续分布的,一切波长的光组成明线光谱由稀薄气体发光产生的由不连续的一些亮线组成
吸收光谱高温物体发出的白光,通过物质后某些波长的光被吸收而产生的在连续光谱的背景上,由一些不连续的暗线组成的光谱③光谱分析:
一种元素,在高温下发出一些特点波长的光,在低温下,也吸收这些波长的光,所以把明线光波中的亮线和吸收光谱中的暗线都称为该种元素的特征谱线,用来进行光谱分析。
4、电磁波的应用:
1、电视
简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。
2、雷达工作原理
利用发射与接收之间的时间差,计算出物体的距离。
3、手机
在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。电磁波与机械波的比较:
共同点:都能产生干涉和衍射现象;它们波动的频率都取决于波源的频率;在不同介质中传播,频率都不变.
不同点:机械波的传播一定需要介质,其波速与介质的性质有关,与波的频率无关.而电磁波本身就是一种物质,它可以在真空中传播,也可以在介质中传播.电磁波在真空中传播的速度均为3。0×108m/s,在介质中传播时,波速和波长不仅与介质性质有关,还与频率有关.不同电磁波产生的机理
无线电波是振荡电路中自由电子作周期性的运动产生的.红外线、可见光、紫外线是原子外层电子受激发产生的.伦琴射线是原子内层电子受激发产生的.γ射线是原子核受激发产生的.
频率(波长)不同的电磁波表现出作用不同.
红外线主要作用是热作用,可以利用红外线来加热物体和进行红外线遥感;紫外线主要作用是化学作用,可用来杀菌和消毒;
伦琴射线有较强的穿透本领,利用其穿透本领与物质的密度有关,进行对人体的透视和检查部件的缺陷;γ射线的穿透本领更大,在工业和医学等领域有广泛的应用,如探伤,测厚或用γ刀进行手术.
高中物理知识点总结6
一、三种产生电荷的方式:
1、摩擦起电:
(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;
(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;
(3)实质:电子从一物体转移到另一物体;
2、接触起电:
(1)实质:电荷从一物体移到另一物体;
(2)两个完全相同的物体相互接触后电荷平分;
(3)电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;
(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;
(2)实质:使导体的电荷从一部分移到另一部分;
(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
5、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
6、元电荷:一个电子所带的电荷叫元电荷,用e表示。
7、e=1.6×10—19c;
8、一个质子所带电荷亦等于元电荷;
9、任何带电物体所带电荷都是元电荷的整数倍;
二、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力.
1、计算公式:F=kQ1Q2/r2(k=9.0×109N。m2/kg2)
2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)
3、库仑力不是万有引力;
三、电场:电场是使点电荷之间产生静电力的一种物质。
1、只要有电荷存在,在电荷周围就一定存在电场;
2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;
3、电场、磁场、重力场都是一种物质
四、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;
1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;
2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)
3、该公式适用于一切电场;
4、点电荷的电场强度公式:E=kQ/r2
五、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;
六、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。
1、电场线不是客观存在的线;
2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线。DAT
(1)只有一个正电荷:电场线起于正电荷终于无穷远;
(2)只有一个负电荷:起于无穷远,终于负电荷;
(3)既有正电荷又有负电荷:起于正电荷终于负电荷;
3、电场线的作用:
1)表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);
2)表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;
4、电场线的特点:
1)电场线不是封闭曲线;
2)同一电场中的电场线不向交;
七、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;
1、匀强电场的电场线是一簇等间距的平行线;
2、平行板电容器间的电是匀强电场;
八、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。
1、定义式:UAB=WAB/q;
2、电场力作的功与路径无关;
3、电势差又命电压,国际单位是伏特;
九、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;
1、电势具有相对性,和零势面的选择有关;
2、电势是标量,单位是伏特V;
3、电势差和电势间的关系:UAB=φA—φB;
4、电势沿电场线的方向降低时,电场力要作功,则两点电势差不为零,就不是等势面;
4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;
5、电场线总是由电势高的地方指向电势低的地方;
6、等势面的画法:相另等势面间的`距离相等;
十、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。
1、数学表达式:U=Ed;
2、该公式的使适用条件是,仅仅适用于匀强电场;
3、d是两等势面间的垂直距离;
十一、电容器:储存电荷(电场能)的装置。
1、结构:由两个彼此绝缘的金属导体组成;
2、最常见的电容器:平行板电容器;
十二、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。
1、定义式:C=Q/U;
2、电容是表示电容器储存电荷本领强弱的物理量;
3、国际单位:法拉简称:法,用F表示
4、电容器的电容是电容器的属性,与Q、U无关;
十三、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N。m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)
1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;
2、当电容器未与电路相连通时电容器两板所带电荷量不变;
十四、带电粒子的加速:
1、条件:带电粒子运动方向和场强方向垂直,忽略重力;
2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2—1/2mv02;
3、推论:当初速度为零时,Uq=1/2mvt2;
4、使带电粒子速度变大的电场又名加速电场;
高中物理知识点总结7
光源
1.定义:能够自行发光的物体.
2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.
物理知识点二、光的直线传播
1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=33108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即v
2.本影和半影
(l)影:影是自光源发出并与投影物体表面相切的`光线在背光面的后方围成的区域.
(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.
(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.
(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.
3.用眼睛看实际物体和像
用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
物理知识点三、光的反射
1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.
2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.
3.分类:光滑平面上的反射现象叫做镜面反射。发生在粗糙平面上的反射现象叫做漫反射。镜面反射和漫反射都遵循反射定律.
4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的
物理知识点四.平面镜的作用和成像特点
(1)作用:只改变光束的传播方向,不改变光束的聚散性质.
(2)成像特点:等大正立的虚像,物和像关于镜面对称.
(3)像与物方位关系:上下不颠倒,左右要交换
高中物理知识点总结8
匀变速直线运动定义
匀变速直线运动是高中物理最基本,同时也是考察做多的一种运动形式。
物体在一条直线上运动,如果在相等的时间内速度的变化量相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
匀变速直线运动图像
在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;对应着加速度与速度方向相同。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动;对应着加速度与速度方向相反。
做匀变速直线运动的前提条件
物体到底在满足什么前提下才能做匀变速直线运动呢?
这个前提条件,主要是对比曲线运动的前提条件来说的。物体作匀变速直线运动须同时符合下述两条:
1,受恒外力作用(保证加速度方向大小不变);
2,合外力与初速度在同一直线上(保证物体运动方向不变)。
当合外力的方向与物体运动方向一致时,为匀加速直线运动;当合外力方向与物体运动方向相反时,为匀减速直线运动。
匀变速直线运动的公式总结
匀变速直线运动有四个最基本公式,分别如下:
(1)匀变速直线运动速度与时间的关系公式
vt=v0+at
(2)匀变速直线运动位移与时间的关系公式
x=v0t+1/2at2
(3)匀变速直线运动位移与速度的关系公式
vt2-v02=2ax
(4)位移与平均速度的关系公式
x=(vt+v0)·t/2
匀变速直线运动公式使用与选择
一般来说,题目中含有t的时候,优先考虑的是第一个、第二个方程。
题目没有时间t时,优先考虑的是第三个方程(位移和速度关系)。
从上述的四个公式中不难看出,研究匀变速直线运动主要是研究五个物理量:s、t、a、v0、vt,这五个物理量中只有三个是独立的,可以任意选定。
只要其中三个物理量确定之后,另外两个就确定了。
每个公式中只有其中的四个物理量,当已知某三个而要求另一个时,往往选定一个公式就可以了。
如果两个匀变速直线运动有三个物理量对应相等,那么另外的两个物理量也一定对应相等。例如:在忽略空气阻力的条件下,竖直上抛物体的上升、回落过程对照:最小速度、加速度大小、位移大小相同,因此经历时间和速度大小一定相同。
以上五个物理量中,除时间t外,s、v0、vt、a这四个量都是矢量。
一般做题的过程中选定v0的方向为正方向,以t=0时刻的位移为零,这时s、vt和a的正负就都有了确定的物理意义。当然,这是王尚个人的意见,有的老师喜欢规定a的方向为正方向,这也是可以的。正方向的规定并不严格,但是我们在运用上述四个公式的时候,必须带入矢量进行运算,否则就很容易导致计算错误。
匀变速直线运动中几个常用的推论
在打点计时器及其纸带数据处理的实验中,我们用公式Δs=aT2来求加速度。
这说明任意相邻相等时间内的位移之差相等。这个结论可以推广位:sm-sn=(m-n)aT2;
某段时间的中间时刻的即时速度等于该段时间内的平均速度,这个问题也总是出现在打点计时器的实验题中,大家要注意。
提醒大家的是,某段位移的中间位置的即时速度不小于该段位移内的平均速度。
匀变速直线运动特例:自由落体运动
自由落体运动是一种常见且常考的运动模式,是一种特殊的匀变速直线运动。这种运动的特点是初速度为零,加速度为g的'运动模式。
地球表面附近的上空可看作是恒定的重力场.如不考虑大气阻力,在该区域内的自由落体运动是匀加速直线运动.其加速度恒等于重力加速度g。
虽然地球的引力和物体到地球中心距离的平方成反比,但地球的半径远大于自由落体所经过的路程,所以引力在地面附近可看作是不变的,自由落体的加速度即是一个不变的常量.
自由落体运动,是初速为零的匀加速直线运动。
初速度为零的匀变速直线运动规律
前1秒、前2秒、前3秒……内的位移之比为1∶4∶9∶……
第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比1:3:5:……:(2n-1)。
通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比t1:t2:……:tn=1:√2:√3……:√n。
对末速为零的匀变速直线运动,同样也可以类比运用这些规律。
高中物理知识点总结9
01质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.中间时刻速度Vt/2=V平=(Vt+Vo)/2
3.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
4.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
2)自由落体运动
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
02质点的运动:
1)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
2)匀速圆周运动
1.线速度V=s/t=2r/T 2.角速度=/t=2/T=2f
3.向心加速度a=V2/r=2r=(2/T)2r
4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合
5.周期与频率:T=1/f 6.角速度与线速度的关系:V=r
7.角速度与转速的关系=2n(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度():弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。
3)万有引力
1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的`连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}
03力:
1.重力G=mg (方向竖直向下,g=9.8m/s210m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=FN {与物体相对运动方向相反,:摩擦因数,FN:正压力(N)}
4.静摩擦力0f静fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.6710-11Nm2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0109Nm2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsin (为B与L的夹角,当LB时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsin (为B与V的夹角,当VB时:f=qVB,V//B时:f=0)
高中物理知识点总结10
力学知识点一:
力是物体之间的相互作用,必须有力物体和受力物体。力的大小、方向和作用点的三个要素被称为力图。用向线段的三个要素表示的方法被称为力图。
根据力命名的不同依据,力可分为:1、根据性质命名的力(如重力、弹性、摩擦力、分子力、电磁力等。);2、根据效果命名的力(如拉力、压力、支撑力、动力、阻力等)。
力的作用效果:1、形变;2、改变运动状态。
力学知识点二:
由于地球的吸引,物体受到的力。重力的大小GG=mg,方向垂直向下。作用点称为物体的重心;重心的位置与物体的质量分布和形状有关。质量分布均匀,形状规则的物体重心在其几何中心。悬挂法可以确定薄板物体的重心。
力学知识点三:
(1)内容:变形物体,由于恢复原状,会对接触变形物体产生力,称为弹性。
(2)条件:①接触;②变形。但物体的变形不能超过弹性极限。
(3)弹性方向与产生弹性的变形方向相反(平面接触面之间的弹性方向垂直于接触面;曲面接触面之间的弹性方向垂直于研究点的曲面;点接触处产生的弹性方向垂直于表面和绳子产生的'弹性方向沿绳子所在的直线。)
(4)大小:①弹簧的弹性大小由F=kx计算,②一般情况下,弹性的大小与物体同时受到的其他力和运动状态有关,应根据平衡条件或牛顿定律确定。
力学知识点四:摩擦:
(1)摩擦条件:接触面粗糙、弹性、相对运动(或相对运动趋势),三者必不可少。
(2)摩擦方向:与接触面相切,与相对运动或相对运动趋势相反。但是,请注意,摩擦方向和物体运动方向可能是相同的,也可能是相反的,也可能是任何角度。
高中物理知识点总结11
一、运动的描述
1、物体模型使用质点,忽略形状和大小;当地球旋转为质点时,地球旋转的大小。准确描述物体位置的变化,运动速度S比t,a用Δv与t比。
2、采用一般公式法,平均速度简单,中间速度法,初始速度零比例法,加上几何图像法,解决良好的运动方法。自由落体是一个例子,初始速度为零a等g。垂直抛出初速,上升最高心有数,上下飞行时间,整个过程均匀减速。中心时刻的速度,平均速度相等;加速度好,ΔS等a T平方。
3、速度决定物体的运动。在速度加速的方向上,同向加速反向减少,垂直转弯莫前冲。
二、力
1、解决力学问题的堡垒很强,受力分析是关键;根据效果分析受力性质力。
2、仔细分析受力,定量计算七种力;重力是否有提示,弹性是根据状态确定的;先有弹性后摩擦,相对运动是基础;万物有重力,电场力无疑是固定的;洛仑兹力安培力,本质上是统一的;相互垂直力最大,平行无力。
3、同一直线定方向,计算结果只是量。如果某个数量的方向不确定,则指出计算结果;两力合力小大,两力成q角夹,平行四边形定法;合力大小随q变化;,只有在最大最小的房间里,多力合力合作。
揭示多力问题状态,解决正交分解,解决三角函数。
4、机械问题方法多,整体隔离和假设;整体只看外力,解决内力隔离;整体状态相同,否则隔离多;即使状态不同,整体牛二也可以做;假设某种力是否有,根据计算确定;极限法把握临界状态,程序法按顺序进行;正交分解选择坐标,轴上矢量尽可能多。
三、牛顿运动定律
1、F等ma,由于力,牛顿二定律产生加速。
与a方向相同的合力,速度变量定a方向,a变小的u可以大,只要a与u同向。
2、N、T等力是视重,mg乘积是实重;超重失重,其中不变就是实重;加速上升是超重,减速下降也是超重;失重由加减升定,完全失重重重零。
四、曲线运动,万有引力
1、运动轨迹是曲线,向心力是条件,曲线运动速度变化,方向是切线。
2、向心力圆周运动,供需关系在心,径向合力提供充足,需要mu平方比R,mrw也需要平方,供需平衡不离心。
3、万有重力因质量而存在于世界上的一切中,都是因为天体质量大,万有重力显示神奇的力量。卫星绕着天体行走,运动速度快的卫星由距离决定。距离越近越快,距离越远越慢。同步卫星速度固定,定点赤道上空行驶。
五、机械能和能量
1、确定状态找动能,分析过程找力功,加上正负功,动能增量与之相同。
2、明确两态机械能,再看工艺力,重力外功为零,初态末态能量相同。
3、确定状态,寻找量能,然后看过程力。如果你有功,你可以改变它。初态末态能量相同。
六、电场〖选修3——1〗
1、库仑定律电荷力,万有引力引场力,像孪生兄弟,kQq与r平方比。
2、电荷周围有电场,F比q定义场强。KQ比r2点电荷,U均强电场为均强电场。
电场强度为矢量,正电荷受力定向。描述电场用场线,密度弱,强。
场能性质为电势,场线方向电势下降。场力做功是qU,动能定理不能忘记。
4、电场中有等势面,垂直画场线。方向由高到低,面密线密。
七、恒定电流〖选修3—1〗
1、当电荷定向移动时,电流等于q比t。自由电荷是内因,两端电压是条件。
正荷流向定向,串电流表测量。电源外部正流负,从负到严重内部。
2、电阻定律三个因素,温度不变,控制变量讨论,r l比s等电阻。
电流做功U I t,电热I平方R t 。电功率,W比t,电压乘电流也是如此。
3、基本电路串联,分压分流要清晰。复杂电路动脑,等效电路是关键。
4、关闭部分路、外电路和内电路,遵循欧姆定律。
除总阻电流外,路端电压内压降和等电势。
八、磁场〖选修3—1〗
1、磁体周围有磁场,N极受力定方向;电流周围有磁场,安培定方向。
2、F比I l是场强,φ等B S磁通量,磁通密度φ比S,磁场强度的名称。
3、BIL注意相互垂直的安培力。
4、洛仑兹力安培力,力向左甩,别忘了。
九、电磁感应〖选修3—2〗
1、电磁感应磁生电,磁通变化是条件。电路闭合有电流,电路断开是电源。感应电势大小,磁通变化率知道。
2、楞次定律方向,阻碍变化是关键。导体切割磁感线,右手定则更方便。
3、楞次定律是抽象的。我们真正理解,从三个方面来看,它阻碍了磁通量的增减。相对运动受到抵抗。如果我们想阻止自感电流,我们应该保持能量。楞次先看原磁场。感应磁场的方向取决于磁通量的增减。安培定律知道i向。
十、交流电〖选修3—2〗
1、均匀强磁场有线圈,旋转产生交流电。电流电压电势,变化规律为弦线。
中性面计时为正弦,平行面计时为余弦。
2、NBSω以热量计算最大值和有效值。
3、变压器用于交流,不能使用恒定电流。
理想变压器,初级变压器U I值,次级U I相等是原则。
电压比,与匝数比成正比;电流比,反比匝数比。
采用变压比,若要求某个匝数,化为匝伏比,便于计算。
远程输电,升压降流,否则消耗大,用户后降压。
十一、气态方程〖选修3—3〗
研究气体质量,确定状态,找到参数。绝对温度高T,体积是体积。
对封闭物进行压力分析,牛顿定律帮助您。状态参数要找准,PV比T是恒量。
十二、热力学定律
1、第一定律热力学,能量守恒,感觉良好。内能变化等多少,热量不能少。
正负符号要准确,收支要理解。内部工作和吸热,内部能量增加正值;外部工作和放热,内部能量减少负值。
2、热力学第二定律,热传递不可逆,功转热和热转功,方向性不逆。
机械振动〖选修3——4〗
1、记住简谐振动,O为起点算位移,回复力的方向是指始终平衡位置,大小与位移成正比,平衡位置u大极。
2、O点对称别忘了,振动强度是振幅,振动速度是周期,一周期4A路,单摆周期l比g,再开方根乘2p,秒摆周期为2秒,摆长约等长1米。
长行到质感摆,单摆有等时性。
3、振动图像描述方向,从底到顶,从顶到底;振动图像描述位移,顶点底点大位移,正负符号指向。
高中物理必背知识点
光的本性
1、两种理论:颗粒说(牛顿)、波动说(惠更斯)。
2、双缝干涉:中间为亮条纹;亮条纹位置:=n;暗条纹位置:=(2n 1)/2(n=0、1、2、3、、、、);条纹间距{:路程差(光程差);:光的波长;/2:光。半波长;d两条狭缝之间的距离;l:挡板与屏间的距离}。
3、光的颜色由光的频率决定,光的频率由光源决定,与介质无关,光的传播速度与介质有关。根据频率从低到高的顺序,光的颜色是:红色、橙色、黄色、绿色、蓝色、靛蓝和紫色(助记:紫色频率大,波长小)。
4、膜干扰:增透膜厚度为绿光在膜中波长的1/4,即增透膜厚度d=/4。
5、光衍射:光在无障碍物的均匀介质中沿直线传播。当障碍物的大小远大于光的波长时,光衍射现象不明显,可视为直线传播,否则不能视为直线传播。
6、光偏振:光偏振表明光是横波。
7、光的电磁说:光的本质是一种电磁波。电磁波谱(根据波长从大到小排列):无线电波、红外线、可见光、紫外线、伦琴射线和射线。红外线、紫外线和线伦琴射线的发现和特性、生成机制和实际应用。
8、光子说,光子的能量E=h {h:普朗克常量=6.6310—34J。s,:光的频率}。
9、爱因斯坦光电效应方程:mVm2/2=h—W {mVm2/2:光电子初动能,h:光子能量,W:金属逸出功}。
必考公式
动力学(运动和力学)
1、牛顿第一运动定律(惯性定律):物体具有惯性,始终保持匀速直线运动或静止,直到有外力迫使它改变为止
2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3、牛顿第三运动定律:F=—F′。{负号表示方向相反,F、F′。各自作用于对方,平衡力反作用力的区别,实际应用:反冲运动}
4、共点力平衡F合=0,推广{正交分解法,三力汇交原理}
5、超重:FN>G,失重:FNr}
6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播波长;波速由介质本身决定}
7、声波波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波为纵波)
8、明显生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸小于波长,或差异不大
9、波干扰条件:两列波频率相同(相差恒定,振幅相近,振动方向相同)
10、多普勒效应:由于波源与观察者之间的相互运动,波源的发射频率与接收频率不同{相互接近,接收频率增加,反之亦然。
牛顿运动定律
1、F等ma,由于力,牛顿二定律产生加速。
与a方向相同的合力,速度变量定a方向,a如果变小,u可以变大,只要a和u同向。
2、N、T等力是视重,mg乘积是实重。超重重视重,其中不变就是实重。加速上升是超重,减速下降也是超重。失重取决于加减,完全失重
曲线运动,万有引力
1、运动轨迹是曲线,向心力是条件,曲线运动速度变化,方向是切线。
2、向心力圆周运动,供需关系在心,径向合力提供充足,需要mu平方比R,mrw也需要平方,供需平衡不离心。
3、万有重力因质量而存在于世界上的一切中,都是因为天体质量大,万有重力显示神奇的力量。卫星绕着天体行走,运动速度快的卫星由距离决定。距离越近越快,距离越远越慢。同步卫星速度固定,定点赤道上空行驶。
高中物理考试公式:机械能和能量
1、确定状态找动能,分析过程找力功,加上正负功,动能增量与之相同。
2、明确两态机械能,再看工艺力,重力外功为零,初态末态能量相同。
3、确定状态,寻找量能,然后看过程力。如果你有功,你可以改变它。初态末态能量相同。
直线运动
机械运动:一个物体相对于其他物体的位置变化,称为机械运动。
1、参考系:假设物体不动是为了研究物体的运动。又称参考(参考不一定静止)。
2、质量:只考虑物体的质量,不考虑物体的大小和形状。
(1)质感是理想化模型。
(2)将物体视为质点的条件:物体的形状和大小可以忽略不计时。
例如:研究地球绕太阳运动,火车从北京到上海。
3、时间间隔:在表示时间的'数轴上,时间间隔是一点,时间间隔是一线段。
例如:5点正,9点,7点30是时间间隔,45分钟,3小时是时间间隔。
4、位移:从起点到终点的相线段,位移是矢量,用相线段表示。距离:描述质点运动轨迹的曲线。
(1)位移为零,距离不一定为零。距离为零,位移为零。
(2)只有当质点单向直线运动时,质点的位移才等于距离。
(3)国际单位的位移是米,用m表示
5、位移时间图:建立一直角坐标系,横轴表示时间,纵轴表示位移。
(1)匀速直线运动的位移图像是与横轴平行的直线。
(2)匀变速直线运动的位移图像是倾斜直线。
(3)位移图像和横轴夹角的正切值表示速度。夹角越大,速度越大。
6、速度是指质点运动速度的物理量。
(1)物体在某一时刻的速度比瞬时速度快。物体在某一时间的速度称为平均速度。
(2)速度只表示速度的大小,是标量。
7、加速度:描述物体速度变化的物理量。
(1)定义加速度:a=vt—v0/t
(2)加速度与物体的速度无关。
(3)速度大,加速度不一定大。不一定为零。零加速不一定为零。
(4)速度变化等于最终减速。加速度等于速度变化与所需时间的比值(速度变化率)无关。
(5)加速度为矢量,加速度方向与速度变化方向相同。
(6)加速的国际单位是m/s2
高中物理知识点总结12
高中物理知识点总结如下:
1.物理现象(声、光、热、力、电)和物理概念(质量、压强、匀速运动、力学单位、电路结构、欧姆定律、电磁感应等)的介绍。
2.各个物理定律(包括定义、公式、现象、举例等)和原理的介绍。
3.实验操作和相关练习。
希望以上信息对您有所帮助,如果您还有其他问题,欢迎告诉我。
高中物理知识点总结13
(1)定义:电势相等的点构成的面。
(2)特点:
等势面上各点电势相等,在等势面上移动电荷,电场力不做功。
等势面与电场线垂直
两等势面不相交
等势面的密集程度表示场强的'大小:疏弱密强。
画等势面时,相邻等势面间的电势差相等。
(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。
高中物理知识点总结14
1、大的物体不一定不能看成质点,小的物体不一定能看成质点。
2、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间,是第n个1秒。第n秒末和第n+1秒初是同一时刻。
3、忽视位移的矢量性,只强调大小而忽视方向。
4、物体做直线运动时,位移的大小不一定等于路程。
5、位移也具有相对性,必须选一个参考系,选不同的参考系时,物体的位移可能不同。
6、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线,应调整一下振针距复写纸的高度,使之增大一点。
7、使用计时器打点时,应先接通电源,待打点计时器稳定后,再释放纸带。
8、使用电火花打点计时器时,应注意把两条白纸带正确穿好,墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔,压在复写纸下面。
9、"速度"一词是比较含糊的统称,在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个,要学会根据上、下文辨明"速度"的含义。平常所说的"速度"多指瞬时速度,列式计算时常用的是平均速度和平均速率。
10、着重理解速度的矢量性。有的同学受初中所理解的速度概念的影响,很难接受速度的方向,其实速度的方向就是物体运动的方向,而初中所学的"速度"就是现在所学的平均速率。
11、平均速度不是速度的平均。
12、平均速率不是平均速度的大小。
13、物体的速度大,其加速度不一定大。
14、物体的速度为零时,其加速度不一定为零。
15、物体的速度变化大,其加速度不一定大。
16、加速度的正、负仅表示方向,不表示大小。
17、物体的加速度为负值,物体不一定做减速运动。
18、物体的加速度减小时,速度可能增大;加速度增大时,速度可能减小。
19、物体的速度大小不变时,加速度不一定为零。
20、物体的加速度方向不一定与速度方向相同,也不一定在同一直线上。
21、位移图象不是物体的运动轨迹。
22、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆。
23、图象是曲线的不表示物体做曲线运动。
24、人们得出"重的物体下落快"的错误结论主要是由于空气阻力的影响。
25、严格地讲自由落体运动的物体只受重力作用,在空气阻力影响较小时,可忽略空气阻力的影响,近似视为自由落体运动。
26、自由落体实验实验记录自由落体轨迹时,对重物的要求是"质量大、体积小",只强调"质量大"或"体积小"都是不确切的`。
27、自由落体运动中,加速度g是已知的,但有时题目中不点明这一点,我们解题时要充分利用这一隐含条件。
28、自由落体运动是无空气阻力的理想情况,实际物体的运动有时受空气阻力的影响过大,这时就不能忽略空气阻力了,如雨滴下落的最后阶段,阻力很大,不能视为自由落体运动。
29、自由落体加速度通常可取9.8m/s?或10m/s?,但并不是不变的,它随纬度和海拔高度的变化而变化。
30、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件,如果v0≠0则这四个比例式不成立。
31、匀变速运动的各公式都是矢量式,列方程解题时要注意各物理量的方向。
32、常取初速度v0的方向为正方向,但这并不是一定的,也可取与v0相反的方向为正方向。
33、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解。
34、找准追及问题的临界条件,如位移关系、速度相等等。
35、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。
36、产生弹力的条件之一是两物体相互接触,但相互接触的物体间不一定存在弹力。
37、某个物体受到弹力作用,不是由于这个物体的形变产生的,而是由于施加这个弹力的物体的形变产生的。
38、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关。
39、胡克定律公式F=kx中的x是弹簧伸长或缩短的长度,不是弹簧的总长度,更不是弹簧原长。
40、弹簧弹力的大小等于它一端受力的大小,而不是两端受力之和,更不是两端受力之差。
41、杆的弹力方向不一定沿杆。
42、摩擦力的作用效果既可充当阻力,也可充当动力。
43、滑动摩擦力只以μ和N有关,与接触面的大小和物体的运动状态无关。
44、各种摩擦力的方向与物体的运动方向无关。
45、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错。
46、最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关。
47、画力的图示时要选择合适的标度。
48、实验中的两个细绳套不要太短。
49、检查弹簧测力计指针是否指零。
50、在同一次实验中,使橡皮条伸长时结点的位置一定要相同。
51、使用弹簧测力计拉细绳套时,要使弹簧测力计的弹簧与细绳套在同一直线上,弹簧与木板面平行,避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。
52、在同一次实验中,画力的图示时选定的标度要相同,并且要恰当使用标度,使力的图示稍大一些。
53、合力不一定大于分力,分力不一定小于合力。
54、三个力的合力最大值是三个力的数值之和,最小值不一定是三个力的数值之差,要先判断能否为零。
55、两个力合成一个力的结果是惟一的,一个力分解为两个力的情况不惟一,可以有多种分解方式。
56、一个力分解成的两个分力,与原来的这个力一定是同性质的,一定是同一个受力物体,如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力,不能说成下滑力和物体对斜面的压力。
57、物体在粗糙斜面上向前运动,并不一定受到向前的力,认为物体向前运动会存在一种向前的"冲力"的说法是错误的。
58、所有认为惯性与运动状态有关的想法都是错误的,因为惯性只与物体质量有关。
59、惯性是物体的一种基本属性,不是一种力,物体所受的外力不能克服惯性。
60、物体受力为零时速度不一定为零,速度为零时受力不一定为零。
61、牛顿第二定律 F=ma中的F通常指物体所受的合外力,对应的加速度a就是合加速度,也就是各个独自产生的加速度的矢量和,当只研究某个力产生加速度时牛顿第二定律仍成立。
62、力与加速度的对应关系,无先后之分,力改变的同时加速度相应改变。
63、虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时,物体将做匀速直线运动或静止,但不能说牛顿第一定律是牛顿第二定律的特例,因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性,在牛顿第二定律中没有体现。
64、牛顿第二定律在力学中的应用广泛,但也不是"放之四海而皆准",也有局限性,对于微观的高速运动的物体不适用,只适用于低速运动的宏观物体。
65、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a,计算合外力时要进行正确的受力分析,不要漏力或添力。
66、用正交分解法列方程时注意合力与分力不能重复计算。
67、注意F合=ma是矢量式,在应用时,要选择正方向,一般我们选择合外力的方向即加速度的方向为正方向。
68、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是视重的变化,物体的实重没有改变。
69、判断超重、失重时不是看速度方向如何,而是看加速度方向向上还是向下。
70、有时加速度方向不在竖直方向上,但只要在竖直方向上有分量,物体也处于超、失重状态。
71、两个相关联的物体,其中一个处于超(失)重状态,整体对支持面的压力也会比重力大(小)。
72、国际单位制是单位制的一种,不要把单位制理解成国际单位制。
73、力的单位牛顿不是基本单位而是导出单位。
74、有些单位是常用单位而不是国际单位制单位,如:小时、斤等。
75、进行物理计算时常需要统一单位。
76、只要存在与速度方向不在同一直线上的合外力,物体就做曲线运动,与所受力是否为恒力无关。
77、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨迹的切线。请注意区别。
78、合运动是指物体相对地面的实际运动,不一定是人感觉到的运动。
79、两个直线运动的合运动不一定是直线运动,两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动。
80、运动的合成与分解实际上就是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解。
81、运动的分解并不是把运动分开,物体先参与一个运动,然后再参与另一运动,而只是为了研究的方便,从两个方向上分析物体的运动,分运动间具有等时性,不存在先后关系。
82、竖直上抛运动整体法分析时一定要注意方向问题,初速度方向向上,加速度方向向下,列方程时可以先假设一个正方向,再用正、负号表示各物理量的方向,尤其是位移的正、负,容易弄错,要特别注意。
83、竖直上抛运动的加速度不变,故其v-t图象的斜率不变,应为一条直线。
84、要注意题目描述中的隐蔽性,如"物体到达离抛出点5m处",不一定是由抛出点上升5m,有可能在下降阶段到达该处,也有可能在抛出点下方5m处。
85、平抛运动公式中的时间t是从抛出点开始计时的,否则公式不成立。
86、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法。用平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动,但此实验不能说明平抛运动的水平分运动是匀速直线运动。
87、并不是水平速度越大斜抛物体的射程就越远,射程的大小由初速度和抛射角度两因素共同决定。
88、斜抛运动最高点的物体速度不等于零,而等于其水平分速度。
89、斜抛运动轨迹具有对称性,但弹道曲线不具有对称性。
90、在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。
91、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,各点做匀速圆周运动的半径不同,故各点线速度大小不相等。
92、同一轮子上各质点的角速度关系:由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同。各质点具有相同的ω、T和n。
93、在齿轮传动或皮带传动(皮带不打滑,摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等。
94、匀速圆周运动的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力。
95、当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运动状态决定的。
96、绳只能产生拉力,杆对球既可以产生拉力又可以产生压力,所以求作用力时,应先利用临界条件判断杆对球施力的方向,或先假设力朝某一方向,然后根据所求结果进行判断。
高中物理知识点总结15
重力势能
1.电势能的概念
(1)电势能
电荷在电场中具有的势能。
(2)电场力做功与电势能变化的关系
在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。
①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。
②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的`绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。
说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。
(3)零电势能点
在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。
说明:①零电势能点的选择具有任意性。
②电势能的数值具有相对性。
③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。
2.电势的概念
(1)定义及定义式
电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。
(2)电势的单位:伏(V)。
(3)电势是标量。
(4)电势是反映电场能的性质的物理量。
(5)零电势点
规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。
(6)电势具有相对性
电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。
(7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。
(8)电势能与电势的关系:ε=qU。
【高中物理知识点总结】相关文章:
高中物理知识点总结08-28
高中物理知识点总结10-22
高中物理知识点总结10-14
高中物理知识点总结07-21
高中物理复习知识点总结11-15
关于高中物理的知识点总结11-11
高中物理电学知识点总结12-11
高中物理力学知识点总结07-30
(优)高中物理知识点总结10-30
高中物理必修二知识点总结11-14