- 相关推荐
初三数学复习资料
初三数学复习资料1
初三数学期末复习资料1:二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的.上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
初三数学期末复习资料2:反比例函数
定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的一般形式
一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成:(k是常数,k≠0).
2.要求出反比例函数的解析式,利用待定系数法求出k即可.
反比例函数解析式的特征
⑴等号左边是函数,等号右边是一个分式。分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数
⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
初三数学复习资料2
知识点1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常数项是-2。
2、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2。
3、一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7。
4、把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0。
知识点2:直角坐标系与点的位置
1、直角坐标系中,点A(3,0)在y轴上。
2、直角坐标系中,x轴上的任意点的横坐标为0。
3、直角坐标系中,点A(1,1)在第一象限。
4、直角坐标系中,点A(-2,3)在第四象限。
5、直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1、当x=2时,函数y=的值为1。
2、当x=3时,函数y=的值为1。
3、当x=-1时,函数y=的值为1。
知识点4:基本函数的概念及性质
1、函数y=-8x是一次函数。
2、函数y=4x+1是正比例函数。
3、函数是反比例函数。
4、抛物线y=-3(x-2)2-5的开口向下。
5、抛物线y=4(x-3)2-10的对称轴是x=3。
6、抛物线的顶点坐标是(1,2)。
7、反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1、数据13,10,12,8,7的平均数是10。
2、数据3,4,2,4,4的众数是4。
3、数据1,2,3,4,5的中位数是3。
知识点6:特殊三角函数值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
知识点7:圆的基本性质
1、半圆或直径所对的圆周角是直角。
2、任意一个三角形一定有一个外接圆。
3、在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4、在同圆或等圆中,相等的.圆心角所对的弧相等。
5、同弧所对的圆周角等于圆心角的一半。
6、同圆或等圆的半径相等。
7、过三个点一定可以作一个圆。
8、长度相等的两条弧是等弧。
9、在同圆或等圆中,相等的圆心角所对的弧相等。
10、经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1、直线与圆有公共点时,叫做直线与圆相切。
2、三角形的外接圆的圆心叫做三角形的外心。
3、弦切角等于所夹的弧所对的圆心角。
4、三角形的内切圆的圆心叫做三角形的内心。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、垂直于半径的直线是圆的切线。
8、圆的切线垂直于过切点的半径。
初三数学复习资料3
轴对称知识点
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(x,y)关于x轴对称的点的坐标为(x,-y)
点(x,y)关于y轴对称的点的坐标为(-x,y)
点(x,y)关于原点轴对称的点的坐标为(-x,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
不等式
1.掌握不等式的基本性质,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac
2.比较大小:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。
4.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左。
一元一次方程的解法
1.一般方法:
①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:括号前是“+”,把括号和它前面的`“+”去掉后,原括号里各项的符号都不改变。括号前是“-”,把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。(改成与原来相反的符号。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。
⑤系数化为1。
2.图像法:一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
3.求根公式法:对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。
整式
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
分数的性质
1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。
2.分数可以表述成一个除法算式:如二分之一等于1除以2。其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。
3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。
4.当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。因此,每一个分数都有无限个与其相等的分数。利用此性质,可进行约分与通分。
5.一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。
正负数加减法则顺口溜
正正相加,和为正。
负负相加,和为负。
正减负来,得为正。
负减正来,得为负。
其余没说,看大小。
谁大就往,谁边倒。
初三数学复习资料4
有理数
1、整数→正整数/0/负整数
2、分数→正分数/负分数
数轴
1、画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
2、任何一个有理数都可以用数轴上的一个点来表示。
3、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
4、数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值
1、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
2、正数的`绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算
加法:
1、同号相加,取相同的符号,把绝对值相加。
2、异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
3、一个数与0相加不变。
减法:
减去一个数,等于加上这个数的相反数。
乘法:
1、两数相乘,同号得正,异号得负,绝对值相乘。
2、任何数与0相乘得0。3、乘积为1的两个有理数互为倒数。
初三数学复习资料5
因式分解的方法
1.十字相乘法
(1)把二次项系数和常数项分别分解因数;
(2)尝试十字图,使经过十字交叉线相乘后所得的数的和为一次项系数;
(3)确定合适的十字图并写出因式分解的结果;
(4)检验。
2.提公因式法
(1)找出公因式;
(2)提公因式并确定另一个因式;
①找公因式可按照确定公因式的方法先确定系数再确定字母;
②提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的`每一项,求的剩下的另一个因式;
③提完公因式后,另一因式的项数与原多项式的项数相同。
3.待定系数法
(1)确定所求问题含待定系数的一般解析式;
(2)根据恒等条件,列出一组含待定系数的方程;
(3)解方程或消去待定系数,从而使问题得到解决。
初三数学复习资料6
圆知识点汇总
圆的半径:r
直径:d
圆周率:π(数值为3。1415926至3。1415927之间……无限不循环小数),通常采用3。14作为π的值
圆面积:S=πr^2或S=π(d/2)^2
半圆的面积:S半圆=(πr^2)/2
圆环面积:S大圆—S小圆=π(R^2—r^2)(R为大圆半径,r为小圆半径)
圆的周长:C=2πr或c=πd
半圆的周长:d+πd/2或者d+πr
垂径定理
垂直于弦的直径平分弦,并且平分弦所对的两条弧
进一步结论
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
特别注意:这两个定理,哪个定律规定弦不是直径。注意选择题陷阱。
1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径
圆上各点到定点的距离都等于定长
到定点的距离等于定长的点都在同个平面上
因此,圆心为O、半径为r的圆可以看成所有到定点O距离等于定长r的点的集合
2、弧、弦、圆心角
弧:圆上任意两点间的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆
弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径
圆心角:顶点在圆心的角
圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴
圆是中心对称图形,圆心O是它的对称中心
3、圆周角
顶点在圆上,并且两边都圆相交的角叫做圆周角。
4、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半
推论:
半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。
推论:
圆的内接四边形对角之和为180度
注意:对内接四边形的判定,必须4个顶点都在圆上。
5、点和圆的位置关系
点P在圆内d点P在圆上d=r
点P在圆外d>r
6、不在同一直线上的三个点确定一个圆
注意:不在同一直线这一要点
经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆
外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心
特殊的:直角的外心在斜边上的中点。
一般求外心的题往往是直角或者等腰,等腰请结合垂径定理和勾股定理
7、直线和圆的位置关系
直线l和圆O相交(有两个公共点)d直线l和圆O相切(有一个公共点)d=r直线为切线,点为切点
直线l和圆O相离(没有公共点)d>r
8、切线的`判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)
9、切线的性质定理
圆的切线垂直于过切点的半径
这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。
10、切线长定理
经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长
从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。
11、三角形的的内心
与三角形各边都相切的圆叫做三角形的内切圆。
内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。
注意内心外心的区别和应用。三角形的内心必然在内部,外心则有可能在外部
内切圆半径的计算方法
三角形面积=内切圆半径_三角形周长/2
例题(20__广东XX二模)RtABC中,∠C=90°,AC=4,BC=3,内切圆半径=;
12、点和圆的位置关系
点P在圆内d点P在圆上d=r
点P在圆外d>r
13、三个相等:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
在同圆或等圆中,如果两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。
在同圆或等圆中,如果两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。
14、直线和圆的位置关系
直线与圆相交(两个交点)d直线与圆相切(一个交点)d=r
直线与圆相离(没有交点)d>r
15、圆和圆的位置关系
圆与圆相交(两个交点)R—r圆与圆相切(一个交点)d=R—r(内切)d=R+r(外切)
圆与圆外离(没有交点)d>R+r
圆与圆内含(没有交点)d还一种最特殊情况,同心圆d=0
注意:相切一定要看清楚,是内切还是外切,还是两种都可能
学生可尝试画一个数轴区域示意图
16、对圆而言,请注重其对称性
相切的两个圆,不论内切外切,显然,切点和两个圆心应该在同一直线上。
17、扇形的弧长及面积
扇形:由两条半径及两条半径组成的角对应的弧形成的图形
扇形弧长:
注意区别弧长与周长
扇形面积
弧长及面积的关系
18、正多边形
正多边形:各边长相等,各顶角相等的多边形
我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心
外接圆的半径叫做正多边形的半径
正多边形的每一边所对的圆心角叫做正多边形的中心角
中心到正多边形的一边的距离叫做正多边形的边心距
正多边形的计算:遵循每条边所对应的圆心角的度数为360/n即可,利用垂径定理,等腰三角形进行解答。
19、圆锥的侧面积和全面积
圆锥是由一个底面和一个侧面围成的
我们把连接圆锥顶点和底边圆周上任意一点的线段叫做圆锥的母线
圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为,因此圆锥的侧面积为,圆锥的全面积为
圆锥侧面展开扇形的中心角可通过此扇形的弧长及半径,进行计算
20、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角。
如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点
把一个图形绕着某一个点旋转180度
如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
初三数学复习资料7
1、弧长公式
n°的圆心角所对的弧长l的计算公式为L=nπr/180
2、扇形面积公式,其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长.
S=﹙n/360﹚πR2=1/2×lR
3、圆锥的侧面积,其中l是圆锥的母线长,r是圆锥的地面半径.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圆的切线与经过切点的弦所夹的角,叫做弦切角.
弦切角定理:弦切角等于弦与切线夹的弧所对的圆周角.
一、选择题
1.(20xxo珠海,第4题3分)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考点:圆柱的计算.
分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.
解答:解:圆柱的侧面积=2π×3×4=24π.
故选A.
点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.
2.(20xxo广西贺州,第11题3分)如图,以AB为直径的'⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()
A.B.C.D.
考点:垂径定理;勾股定理;勾股定理的逆定理;弧长的计算.
分析:连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.
解答:解:连接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故选B.
【初三数学复习资料】相关文章:
数学整理复习资料11-24
高三数学复习资料(5篇)09-02
高三数学复习资料5篇09-29
高三数学复习资料(汇编5篇)11-18
高三数学复习资料集锦5篇08-14
五年级下册数学复习资料09-29
初三数学教学总结10-15
初三数学教学反思11-09
初三数学下册教学总结11-17
初三数学教学计划05-20