【实用】数学说课稿合集8篇
作为一位杰出的老师,常常要写一份优秀的说课稿,说课稿可以帮助我们提高教学效果。快来参考说课稿是怎么写的吧!下面是小编整理的数学说课稿8篇,欢迎大家借鉴与参考,希望对大家有所帮助。

数学说课稿 篇1
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导在引导分析时,留出学生的思考空间
让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N*;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的.前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差<0,>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)
当n=1时,(1)也成立,
所以对一切n∈N*,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 , 即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结(由学生总结这节课的收获)1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式 an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
§3.2 等差数列
一、等差数列
1、定义
注:“从第二项起”及
“同一常数”用红色粉笔标注 二、等差数列的通项公式
数学说课稿 篇2
一、找准学生学习新知的“最近发展区”,在大背景下认识分数
1、分数对于学生来说是全新的,如何将这一全新的知识内化为学生自身的知识,找准学生学习的“最近发展区”是重要的,它是促使学生从“实际发展水平”向“潜在发展水平”的桥梁,学生的思维从已知世界自然而然滑向未知领域。教学时,从学生熟悉的“一半”入手,明确一半是怎么分的,从而引入用一个新的数来表示所有事物的“一半”。
2、以往我们在初次教学分数时,总是以单个的物体的进行平均分,然后“半个”无法用整数表示的时候就引入了分数,优点是这样分数出现的实际需要性能够凸现,学生对分数的产生印象深刻;缺点是这样以单个的物体入手,学生对分数的认识受到局限,会导致到高段学习分数的意义的时候,对单位“1”难以理解和接受。其实“一半”和“半个”是有区别的,只有“半个”才用分数表示是不全面的.。因此,我在分数引入的时候,请学生说身边一些事物的一半,发现日光灯是11个,一半一下子无法说出来。同时一个圆的一半是多少也无法说清。然后,引出“所有事物的一半我们只用一个数表示出来”。从而引入分数二分之一,这样对于分数的认识放在了一个宽广的背景下来学习,学生体会到任何事物的一半都可以用一个1/2来表示。
二、加强直观教学,降低认知难度
分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,教师充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。特别是在比较分子是1的分数大小时,尽管学生在正方形纸上这出了几个几分之一的分数,并且用分数表示出来,但是学生在比较分数大小的时候,还是受到整数认识的影响,认为1/32比1/8大,于是课件显示猪八戒分西瓜的过程,学生直观的认识到分的份数越多,一份就越小。从而使学生内化了分子是一的分数大小的比较这一知识。
三、根据学生年龄特征,创设有趣的问题情境
对于小学生来说,数学学习往往是他们自己生活经验中对数学现象的一种“解读”.在教学中,如果能密切联系学生的生活实际,利用他们喜闻乐见的素材唤起其原有的经验,那么学起来必然亲切、有趣、易懂了。学生的好胜心理强,教师在学生认识了1/4。纸上折了1/4后,谁还能折出其它分子是1的分数,学生动手积极性很高,纷纷折出了其它分数。当问谁折的分数大的时候学生就更愿意比了。起初,学生对分数的比较这一知识停留在比较表面、比较肤浅的水平上。他们用整数的大小比较方法来比较分数,教师也不做出判断,而是利用学生喜欢听的故事,将知识蕴于故事中,在听故事、看课件演示中,使学生主动得构建自己的知识,而不是被动地去接受知识。当回过头来再比谁折的分数大的时候,学生都笑了。而教师也不必再多说什么,学生已经自己推翻了先前的认识。
在整个课堂预设时,想的比较完美,事实上在真正上这堂课的时候有很多的缺憾、很多教学环节还有待完善。从整体上认识分数,对三年级学生而言是否要求拔得过高,在折分数操作时是否需要及时的比较等等。我想只有一次次积累、一次次思考,才能上出真正平实而有效的数学课。
数学说课稿 篇3
一、 说教材
本节课讲的是七年级《数学》课改实验教材下册第八章第二节的“消元”问题的应用,它是一节有关二元一次方程组在实际生活中的应用问题,通过“化未知为已知”的转化过程,理解化归的思想,通过将“二元转化为一元”的过程,理解消元的思想,熟练掌握二元一次方程组的解法,并用二元一次方程组解决实际问题。在经历和体验列方程解决实际问题的过程中,体会方程组是刻画现实世界的有效数学模型。在列方程组解决实际问题的过程中,逐步形成解决实际问题的一般性策略。
二、 说教学目标
(一) 知识与技能目标
1、 学生通过探索生活中的实际问题,了解方程个数和未知数个数之间的关系,掌握列方程组解决应用题的方法和步骤。
2、 学生在探索过程中,体会找等量关系的重要性,理解应用数学知识解决实际问题的方法。
(二) 过程与方法目标
1、 经历列一次方程组解应用题的过程,掌握用数学知识解决问题的方法。
2、 通过自主学习,发展分析归纳解决问题的能力。
(三) 情感与态度目标
1、 通过解趣味数学题,感受到数学的趣味性,提高学习数学的兴趣。
2、 通过解生活中的实际问题,感受到数学知识的广泛应用性。
三、 说教学重、难点
教学重点:列方程组解应用题。
教学难点:找实际问题中的等量关系式。
四、 说教学设备
多媒体。
五、 说教学方法
本节课主要运用了演示文稿的形式来启发引导学生在已掌握的解方程组的基础上探究、交流、讨论、总结、归纳,并解决生活中的实际问题,通过感性上升到理性,使学生掌握列方程组解决问题的方法和步骤,理解应用数学知识解决实际问题的方法。
六、 说教学过程
本节课的整体思路是“情境创设——讲授新课——练习巩固——归纳小结——作业布置——课后反思”六个基本环节来完成。
1、 情境创设:
展示生活中的趣味数学题,让学生试着用所学过的`知识解决,以激发学生兴趣,从而导入课题。
2、 讲授新课:
(1) 引导学生分析问题,从问题中找出等量关系式,学生在探索过程中,体会找等量关系的重要性,理解应用数学知识解决实际问题的方法。
(2) 依据等量关系式设未知数,列方程,并加以解决,通过自主学习,发展分析解决问题的能力。
(3) 回顾解题过程,用框架图作进一步描述,目的让学生掌握列方程组解决实际问题的方法和步骤。
3、 练习巩固:
在练习巩固的过程中,使学生对应用数学知识解决实际问题的方法和步骤有更深的理解,并指导学生掌握学习的方法,以达到学会、会学的目的。
4、 归纳小结
和学生一起带着问题总结出本节课的收获,在归纳小结的过程中进一步加深对所学知识的理解和巩固,知道解决问题的关键是找等量关系式。
5、 作业布置
见课本112页第4、6题,目的在于让学生在课外进一步内化,通过作业批改,及时反馈分析学生学习的掌握情况,分析自我得失,促进教学工作,达到教学相长,共同提高的目的。
6、 课后说教学反思
数学说课稿 篇4
一、教材分析
1.教材所处的地位和作用
本节课主要内容是两种循环语句。学生在前面已经学习了算法的三种基本结构的框图,学习了输入语句、输出语句、赋值语句和条件语句,这些都是学习本节内容的知识基础。
本节在教材中起着承上启下的作用。一方面把框图转化为语言,将循环结构在计算机上实现,另一方面为学习较复杂的流程图打下基础。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。
2.教学的重点和难点
重点:理解for语句与while语句的结构与含义,并会应用
难点:应用两种循环语句将具体问题程序化,搞清for循环和while循环的区别和联系
二、教学目标分析
1.知识与技能目标:
初步掌握三种不同的循环语句的形式、执行过程和比较对循环语句的作用。
2.过程与方法目标:
通过本节课的教学,培养学生分析问题,解决问题,创造性思维的能力和自学能力。
3.情感,态度和价值观目标
在学习过程及解决实际问题的过程中,尽可能的用基本算法语句描述算法、体会算法思想的作用及应用,增进对算法的了解,形成良好的数学学习情感、积极的学习态度。
三、教学方法与手段分析
1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的'教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
1.复习引入
复习循环结构,目的是承上启下,以旧引新,一方面引起学生对旧知识的回忆,另一方面为引入循环语句作铺垫。
操作方法:师生共同在黑板上画出框图,并对重点适当强调。
例1.设计一个计算
的算法并写出相应的框图。
直到型当型
复习的时候通过提问的方式强调重点,学生通过对比,发现差异。
2.探索新知
通过上面的两种循环结构程序框图,引出今天所要学习的两种循环语句,他们分别对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(wHILE型)和直到型(UNTIL型)两种语句结构。即wHILE语句和UNTIL语句。
下面就向学生们介绍这两种语句的一般格式,并在相应位置作出对应的程序框图。之后提问:通过对照,大家觉得wHILE型语句与UNTIL型语句之间有什么区别呢?(学生独立思考,交流讨论、教师予以提示,点拨指导。由特殊到一般培养学生的观察、归纳、概括能力)
3.例题精析
例2把例1的直到型循环框图转化为程序。
教师将直到型语句写在直到型结构旁边,并连线,告诉学生,这就是直到型循环语句。通过这样的训练,使学生意识到程序和框图是一一对应的,写程序只需把框图翻译成相应的语句即可。并且对循环语句有了一个大体的印象。可以培养学生的观察能力和对比能力
例3.求平方值小于1000的最大整数
.(wHILE型)语句的理解
4.课堂小结
⑴循环语句的两种不同形式:wHILE语句和UNTIL语句(另补充了for语句),掌握它们的一般格式。
⑵在用wHILE语句和UNTIL语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法。
⑶循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务。如累加求和,累乘求积等问题中常用到。
(通过师生合作总结,使学生对本节课所学的知识结构有一个明确的认识,抓住本节的重点。)
5.布置作业
必做:设计一个计算
的算法,画出程序框图,写出相应程序。
选做:设计一个计算
的算法,画出程序框图,写出相应程序。
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
6.板书设计
总结:
数学说课稿 篇5
说教材
1、教学内容、地位和作用:
“比例尺”是九年义务教育小学数学第十二册“比例”这一单元第一小节的内容。这部分内容是在学生在对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。
2、教材的编排意图:
教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图的比例尺介绍数值比例尺和线段比例尺,又通过一个机器零件的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项是1的比。例1教学把线段比例尺改写成数值比例尺,为后面比例尺的计算做铺垫。
教学目标:
1.在实践活动中体验生活中需要的比例尺。
2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。
3.能读懂不同形式的比例尺。
教学重点:正确理解比例尺的含义。
教学难点:能熟练解答比例尺的有关问题。
说教法与学法
1、情境导入,激发求知欲望。
课程标准指出:数学知识来源于生活,又服务生活。来源于生活的数学会使学生倍感亲切,在教学中,注重从学生的实际出发,把数学知识的发展与生活紧密的'联系起来,创设了脑筋急转弯和中国地图的图片情景,当学生听到那个急转弯的话题和中国地图时,顿时产生了疑问:柳州到桂林的距离有100多公里,而一只蜗牛从柳州爬到桂林只用了2分钟,比坐火车还快,这是为什么?使得学生在好奇心的驱使下,对数学知识产生浓厚的求知欲望。积极参与接下来的教学活动。
2、自主学习,培养学生自学能力。
自学是一种自主、探究、发散式的学习方法,它会使学生更能掌握和理解数学的真谛。在教学中设计了自学提纲,教给学生自学的方法,放开手让学生去做、去说、去论,培养学生的自学能力。在课堂中学生交流回报自学的成果,改变传统的满堂灌,充分发挥学生的主体作用,让每一位学生自始至终共同参与教学的全过程,试图把学习的时间、空间还给学生,从而获得数学知识,获得成功的体验,提高学生的数学素养。
说教学程序
(一)创设情境,引入比例尺
1、我从柳州坐火车到桂林用了2小时,而一只蜗牛从柳州爬到桂林只用了2分钟,这是怎么回事?
教师提出问题,使学生产生疑问,激起学生的求知欲,
二、动手操作,认识比例尺
1、师:画线段。用线段表示下列物品的长。
①橡皮长5厘米
②铅笔10厘米
③米尺长1米
学生在操作的过程中产生疑问,如何在一张纸上画出1米长的距离,从而使学生感受比例尺的作用
2、出示自学提纲,让学生汇报交流自学的成果,通过教师的引导建构起比例尺的知识网络。
数学说课稿 篇6
尊敬的各位评委老师:
大家早上好!今天我说课的题目是《比的化简》。我准备从教材分析、学情分析、教法分析、学法分析、教学过程等方面进行说课。
教材分析:
《比的化简》是义务教育教科书(北师大版)六年级数学上册第六章第2节的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。
学情分析:
在这之前,学生早已学过"商不变的性质"和"分数的基本性质",最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。
教学目标:
根据新课标要求及本节课的主要内容制定如下教学目标
1、知识技能目标:理解比的基本性质,掌握化简比的方法,并能解决一些简单的实际问题。
2、过程方法目标:在实际情境中,体会化简比的必要性;在自主探究中学会化简比的方法,区分化简比和求比值的不同,促进知识迁移,培养学生的探究能力。
3、情感价值观目标:体验知识的相通性以及数学与生活的联系。
根据对教材的理解及学生的认知水平确定如下教学重难点
教学重点:
理解比的基本性质,掌握化简比的方法。
教学难点:
区分化简比和求比值。
教法分析:
学生是学习的主体,教师只是引导者,根据本节课的特点我主要采用谈话法、讨论法、设疑诱导等教法展开教学。
学法分析:
真正高效的课堂应该是动态的,为了让学生动起来,做课堂的主人,我主要让学生通过自主探究发现比可以化简,观察、发现的学习方式找到比的基本性质,小组合作交流得出化简比的方法。
教学过程:
一、新课导入
1、复习旧知
教师出示复习题,学生自主完成
①比较分数的大小:4/6 ○ 12/18 ○ 60/90 ②比较商的大小:0.5÷0.7 ○ 5÷7 ○ 50÷70 ③求比值:12:32 2.1:7 10:5 提问:你是用什么方法解决以上问题?(①运用分数的基本性质约分成最简分数②运用商不变性质③运用比和除法之间的关系)
2、设疑导入
教师拿出准备好的'两种按不同比例(A:30g奶粉、180g水
B:45g奶粉、270g水)调配的牛奶
①请学生品尝牛奶,比较味道差异。(一样)
②味道是否一样,能不能用学过的数学知识来解决呢?(求奶粉和水的比的比值)
③学生尝试求两种牛奶的调配比值。
30:180 = 30÷180 = 1/6 45:270 = 45/770 = 1/6 比的比值都是1/6,也就是说,三个杯子中的蜂蜜与水的比其实都是1:6,所以两杯牛奶是一个味。(式子后板书:1:6)
30:180 = 30÷180 = 1/6 = 1:6 45:270 = 45/770 = 1/6 = 1:6 看来30:180 = 1:6 ,45:270 = 1:6,这是怎么回事?今天就来一起研究这个问题。
二、探索新知
1、观察相等的比
30:180 = 1:6 ,12:32 = 3:8 观察、比较相等的比,你发现了什么?
比的前项和后项同时乘以或除以同一个不为0的数,比值的大小不变。
你还能写出一组相等的比吗?(学生尝试)
2、化简比
①心里回忆刚才30:180是如何变成1:6,12:32是如何变成3:8的。
②试用自己的方法化简下列比:(学生分组完成)
24:42 (分数基本性质)
0.7:0.8(比的基本性质)
2/5 :1/4 (分数、除法、比之间关系)
③学生谈化简方法,教师补充说明。
④观察化简结果,发现什么?
a.比的前项、后项只有公因数1(是互质数)。
得到:比的前项、后项只有公因数1(是互质数),这样的整数比就是最简整数比。
b.结果有两种形式:比的形式和分数表现形式。
注:分数形式要加以说明不能是带分数。
⑤求比值和化简比的区别(小组讨论,全班交流结果,教师作出评价)
化简比和求比值的方法可以相同,但结果不同,化简比的结果是一个比(即使写成分数形式也读作比),求比值的结果是一个数,可以是整数、分数和小数。
三、训练巩固及延伸
1.化简下面各比。让学生独立完成,指名板书并说说化简过程。
12:36 0.24:0.6 3/4:1/2 1:2/3 2.判断正误,有错就改
①比的前项和后项分别乘或除以相同的数(0除外),比值不变.()
②比可以用分数的形式表现,读作几分之几.()
③8:2化成最简单的整数比是4.()
④运用比的基本性质,把比转化成最简单的整数比的过程,就是比的化简。()
3.扩展练习
①大小圆的半径分别是3厘米和2厘米,试求它们的直径之比,周长之比和面积之比分别是多少?(直径比3:2 周长比3:2 面积比9:4 )
②杨树的棵数是柳树棵数的20%,求杨树的棵数和柳树棵数的比是多少?(20%:1=1:5)
四、小结
学生谈本节课收获,教师补充说明。
五、作业布置
学习与评价第六章第3课时。
数学说课稿 篇7
各位评委老师:
大家好!
我是前进小学的六年级数学老师xx,今天我说课的题目是《比例尺的意义》,请各位评委老师多多指教,我将从下面几个方面进行此课的说课:
一、说教材:
我说课的内容为六年级下册的《比例尺》。这节课是在学生学完“比例的意义和基本性质”、“正、反比例的意义”后安排的内容。这部分内容是学生学习有关地图、工程图纸的计算的基础。比例尺在生活中也有广泛应用,学好它也很有现实意义。
教学目标
1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
重点:理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。
难点:从不同的角度理解比例尺的意义
二、说学生:
六年级的下学期的学生,对于各种图形有着丰富的生活经验,所以,讲解有关比例尺的知识,学生有感性认识,同时也会饶有兴趣的。
三、说教法、学法:教法:
对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。学法:在老师的引导下,通过动手操作,大胆设想、自主探究的`方法进行学习,必要时进行合作交流
四、说教学流程:
整个教学过程分为三大块:导入激趣、意义建构,实际应用。
1、猜谜激趣,创境引入
师:同学们,老师今天为你们带来了一条谜语,猜一猜,它所描述的是一件什么物品?(示谜语:千里之遥现于咫尺;方寸之间妙绘神州)
生1:地图。
生2:中国地图。
师:恭喜你!答对了。(课件出示一幅中国地图)在这个谜面中有一个词“妙绘”,你们知道它所指的妙方、妙法是什么吗?
2、意义建构
安排了探、议、说三个小的环节:
(1)探:首先让学生将一个长100米,宽80米的长方形操场,画在一张纸上。学生不能按原来大小画,只有想办法缩小。当学生画好时,教师找一大一小两幅图,展示给学生看,问:“哪一张画错了?”“没有错,他们缩小的程度不一样。”“那你能在图上标注出你缩小的标准吗?”然后让学生尝试标注。学生在标注时教师巡视,找有代表性的,如“以一当千”,“以一当五百”;“图上1厘米相当于实际10米”,“图上8厘米相当实际80米”;“1:1000”,“1:500”等等贴在黑板上,并摘抄下标注。这一过程让学生用不同的方式表达自己的想法,为学生提供了独立思考的开放空间,关注了学生的个性发展。
(2)议:议什么呢?先议标注的形式不同意义相同。学生结合自己和同伴的标注,及黑板上的板书,讨论交流:形式有多样,但表示的内容会不会一样呢?然后师生共同根据表示的内容进行分类,调整板书。再议意义相同哪种最优。在此基础上,教师总结比例尺的意义,强调注意点。这一认知过程,完全是学生自主构建比例尺意义的过程,学生印象深刻,兴趣浓厚。
(3)说:说具体比例尺的意思。依据自己的理解,说刚才得到的比例尺和老师提供的比例尺意义。这样安排有利于突破“从不同角度去理解比例尺”这一难点。
总之,让学生经历比例尺的产生过程,比知道比例尺意义本身更有价值。
完成了意义建构,接着就是实际应用
3、实际应用:(课件出示)
(一)基本练习
(1)填空
a、一幅图的()和()的()叫比例尺。
b、比例尺=():(),比例尺实际上是一个()。
c、一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
d、图上距离是实际距离的100倍,这幅图的比例尺是()。
(2)判断
a、数值比例尺1:20000,可以写成。()
b、比例尺是一个比。()
c、实际距离一定比图上距离长。()
d、把20厘米100千米化成最简整数比是1:5。()
e、一幅地图的比例尺是1:50000厘米。()
(3)求比例尺
(4)新知运用
一块正方形的面积是400平方米,把它画在图纸上面积是64平方厘米,求这幅图的比例尺。
(二)操作练习
请你设计画出教室的占地平面图
(教室实际长是8米、宽6米)
4、总结全课:
开始老师拿的是比例尺吗?什么叫比例尺呢?它有什么用呢?这样照应了开头,解开学生心中疑团,也概括了主要内容。
数学说课稿 篇8
一、说教材
我教学的内容是小学数学第十一册第二单元分数除法应用题例1、例2。这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。根据教材特点和学生实际我确定本节课的教学目标是:(1)会分析简单的分数除法应用题数量关系。(2)能列方程正确解答简单的分数除法应用题。(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答分数除法应用题。教学难点是:确定单位“1”、分析数量关系
二、说教法:
本节课我贯彻“以学生为主体,教师为主导,训练思维为主线”的原则
1、自主探究、寻求方法
让学生充分自主探究、寻求分数除法的解题方法。
2、设计教法体现主体
课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。
3、分层练习、注重发展
练习有层次,由尝试练习到综合练习到发展练习,层层深入。
三、说教程:
一、导言:
以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。
二、复习:
1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?
①吃了一筐白菜的2/5。
②一本书的价格正好是一支钢笔价格的2/5。
③小明体内的水分占体重的4/5。
三、自主探究、解决问题
1、教学例1
①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?
仔细观察看一看有没有什么发现?
独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。
小结:老师也认为用方程解比较容易,因为它的`解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的几分之几是多少求这个数的应用题用方程解的方法。
【数学说课稿】相关文章:
数学说课稿11-25
《数学广角》说课稿11-03
数学说课稿09-06
小学数学的说课稿06-05
小学数学说课稿08-30
初中数学优秀说课稿11-29
初中数学说课稿09-11
左右数学说课稿09-08
小学数学说课稿07-17
初中数学说课稿07-03