- 相关推荐
交集并集教案
作为一名为他人授业解惑的教育工作者,通常需要准备好一份教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?下面是小编精心整理的交集并集教案,欢迎大家借鉴与参考,希望对大家有所帮助。
交集并集教案1
教学目标:
(1)理解交集与并集的概念;
(2)掌握有关集合的术语和符号,并会用它们正确表示一些简单的集合;
(3)能用图示法表示集合之间的关系;
(4)掌握两个较简单集合的交集、并集的求法;
(5)通过对交集、并集概念的讲解,培养学生观察、比较、分析、概括、等能力,使学生认识由具体到抽象的思维过程;
(6)通过对集合符号语言的学习,培养学生符号表达能力,培养严谨的学习作风,养成良好的学习习惯.
教学重点:交集和并集的概念
教学难点:交集和并集的概念、符号之间的区别与联系
教学过程设计
一、导入新课
【提问】
试叙述子集、补集的概念?它们各涉及几个集合?
补集涉及三个集合,补集是由一个集合及其一个子集而产生的第三个集合.由两个集合产生第三个集合不仅有补集,在实际中还有许多其他情形,我们今天就来学习另外两种.
回忆.
倾听.集中注意力.激发求知欲.
巩固旧知.为导入新课作准备.
渗透集合运算的意识.
二、新课
【引入】我们看下面图(用投影仪打出,软片做成左右两向遮启式,便于同学在“动态”中进行观察).
【设问】
1.第一次看到了什么?
2.第二次看到了什么
3.第三次又看到了什么?
4.阴影部分的周界线是一条封闭曲线,它的内部(阴影部分)当然表示一个新的集合,试问这个新集合中的元素与集A 、集B元素有何关系?
【介绍】这又是一种由两个集合产生第三个集合的情况,在今后学习中会经常出现,为方便起见,称集A与集B的公共部分为集A与集B的交集.
【设问】请大家从元素与集合的关系试叙述文集的概念.
【助学】“且”的含义是“同时”,“又”.
“所有”的含义是A与B的公共元素一个不能少.
【介绍】集合A与集合B的交集记作.读做“ A交B ”?
【助学】符号“ ”形如帽子戴在头
上,产生“交”的感觉,所以开口向下.切记该符号不要与表示子集的符号“ ”、“ ”混淆.
【设问】集A与集B的交集除上面看到的用图示法表示交集外,还可以用我们学习过的哪种方法表示?如何表示?
【设问】与A有何关系?如何表示?与B有何关系?如何表示?
【随练】写出,的交集.
【设问】大家是如何写出的?
我们再看下面的图.
【设问】
1.第一次看到了什么?
2.第二次除看到集B和外,还看到了什么集合?
3.第三次看到了什么?如何用有关集合的符号表示?
4.第四次看到了什么?这与刚才看到的集合类似,请用有关集合的符号表示.
5.第五次同学看出上面看到的集A 、集B 、集、集、集,它们都可以用我们已经学习过的集合有关符号来表示.除此之外,大家还可以发现什么集合?
6.第六次看到了什么?
7.阴影部分的周界是一条封闭曲线,它的内部(阴影部分)表示一个新的集合,试问它的元素与集A集B的元素有何关系?
【注】若同学直接观察到,第二、三、四次和第五次部分观察活动可不进行.
【介绍】这又是由两个集合产生第三个集合的情形,在今后学习中也经常出现,它给我们由集A集B并在一起的感觉,称为集A集B的并.
【设问】请大家从元素与集合关系仿照交集概念的叙述方法试叙述并集的概念?
【助学】并集与交集的概念仅一字之差,即将“且”改为“或”.或的含义是集A中的所有元素要取,集B中的所有元素也要取.
【介绍】集A与集B的并集记作(读作A并B).
【助学】符号“ ”形如“碰杯”时的杯子,产生并的感觉,所以开口向上.切记,不要与“ ”混淆,更不能与“ ”等符号混淆.
观察.产生兴趣.
答:图示法表示的集A.
答:图示法表示集B.集A集B的公共部分?
答:公共部分出现阴影.
倾听.观察
思考.答:该集合中所有元素属于集合A且属于集合B.
倾听.理解.
思考.答:由所有属于集合A且属于集合B的元素所组成的集合,叫做A与B的交集.
倾听.记忆.
倾听.兴趣记忆.
思考:“列举法还是描述法?”答:描述法.
思考.议论.
口答结合板书.
想象交集的图示,或回忆交集的概念.
口答结合板书:是A的子集.A.是
B的子集.
口答结合板书.
口答:从一个集合开始,依次用其每个元素与另一个集合中的元素对照,取出相同的元素组成的集合即为所求.
答:图示法表示的集A.
答:集A中子集A交B的补集.
答:上述区域出现阴影.
口答结合板书
答:出现阴影.
口答结合板书
认真、仔细、整体的进行观察、想象.答:表示集A集B的两条封闭曲线除去表示交集的封闭曲线剩余部分组成一条封闭曲线的内部所表示的集合.
答:出现阴影.
思考:答:该集合中所有元素属于集合A或属于集合B.
倾听,理解.
回忆交集概念,思考.答:由所有属于集合A或属于集合B的元素所组成的`集合,叫做A与B的并集.
倾听.比较.记忆.
倾听,记忆.
倾听.兴趣记忆.比较记忆,.
直观性原则.多媒体助学.
用直观、感性的例子为引入交集做铺垫.
渗透集合运算意识.
直观的感知交集.
培养从直观、感性到理性的概括抽象能力.
解决难点.
兴趣激励.比较记忆
培养用描述法表示集合的能力.
培养想象能力.
以新代旧.
突出重点.
概念迁移为能力.
进一步培养观察能力.
培养观察能力
以新代旧.
培养整体观察能力.
培养从直观、感性到理性的概括抽象能力.
解决难点.比较记忆.
兴趣激励,辩易混.比较记忆.
【设问】集A与集B的并集除上面看到的用图示法表示外,还可以用我们学习过的哪种方法表示?如何表示?
【设问】与A有何关系?如何表示?与B有何关系?如何表示?
【随练】写出,的并集.
【设问】大家是如何写出的?
【例1 】设,,求(以下例题用投影仪打出,随用随启).
【助练】本例实为解不等式组,用数轴法找出公共部分,写出即可.
【例2 】设,
,求
【例3 】设,,求
【例4 】设,
,求
【助学】数轴法(略).想象前面集A集B并集的图示法,类似地,将两个不等式区域并到一起,即为所求.其中元素2虽不属于集A倮属于集B,所以要取,元素1虽不属于集B但属于集A,所以要取,因此,只要将集A的左端点,集B的右端点组成新的不等式区域即为所求(两端点取否维持题设条件).
【助练】以上例题,当理解并较熟练后,且结果可进一步简化时,中间一步或两步可省略.如例4.
【练习】教材第12页练习1~5.
【助练】
1.全集与其某个子集的交集是哪个集合?
2.全集与其某个子集的并集是哪个集合?
3.两个无公共元素的集合的交集是什么集合?
4.两个无公共元素的集合A 、 B,它们的并集如何表示?
5.任意集合A与其本身的交集、并集分别是什么集合?如何表示?
6.任意集A与空集的交集、并集分别是什么集合?如何表示?
7.与的关系如何表示?与的关系如何表示?
【例5 】设,,求
【助思】
1.集A 、集B各是什么集合?
2.如何理解
3.本例实为求两条直线的交点或解二元一次方程组,只不过是从集合的角度提出问题解决问题.
【例6 】已知A为奇数集,B为偶数集,Z为整数集,求,,,,
,
【助学】
1.偶数包括哪些数?任意偶数如何表示?偶数集(全体偶数的集合)如何表示?
2.奇数包括哪些数?任意奇数如何表示?奇数集(全体奇数的集合?如何表示?)
【例7 】设,,,求,,,.
思考:“列举法还是描述法?”
答:描述法.
思考.议论.
口答结合板书.
或
想象并集的图示,或回忆并集的概念.
口答结合板书:A和B都是的子集.,
口答结合板书:
口答:综合考虑两个集合,从最小数开始,哪个集合的元素都取,一个不能丢,相同元素由集合中元素的互异性只取一次.
审清题意.笔练结合板书.
解:
倾听.理解.
审清题意.口答结合板书.
解:
是直角三角形,且是直角三角形是等腰三角形.
审清题意.口答结合板书.
解:是锐角三角形是钝角三角形是锐角三角形,或是钝角三角形是斜三角形.
审清题意.
画数轴.画出不等式区域.倾听.解:
倾听.理解.
口答结合笔练和板演.
思考.答:子集.
思考.答:全集.
思考.答:空集
思考.议论.答:,或
思考.答:A.,
思考.答:分别是空集和A.
,
思考.答:
审清题意.
思考.议论.答:分别是直线或直线上的点集.或者分别是二元一次方程和二元一次方程的解集.
思考:答:求这两条直线的交点,或求这两个二元一次方程的公共解,即求由这两个二元一次方程组成的二元一次方程组的解.
倾听.理解.掌握.
解:
审题中发现未见过的集合.
思索.
答:0,,等.()
或{偶数}
答:,等.()
或(奇数)
解:{奇数} {偶数}
{奇数} Z={奇数}=A.
{偶数} Z={偶数}=B.
{奇数} {偶数}=Z.
{奇数}
{偶数}
审清题意.口答结合板书.
解:
培养用描述法表示集合的能力.
以新代旧.
培养想象能力.
以新代旧.
突出重点.
概念迁移为能力.
突出重点.培养能力.
落实教学目标.
突出重点.培养能力.
三、课堂练习
教材第13页练习1 、 2 、 3 、 4.
【助练习】第13页练习4(1)中用一个方向的斜平行线段表示,用另一方向的平行线段表示如图:
凡有阴影部分即为所求.
【讲解】看图,所得结果实际上还可以看作全集U中子集的补集则有第13页练习4(2)仿上,如图,凡有双向阴影部分即为所求.
【讲解】看图,所得结果实际上还可以看作全集U中子集的补集.则有:以上两个等式称反演律.简记为“先补后并等于先交后补”和“先补后交等于先并后补”.反演律在今后类似问题中给我们带来方便,因为它将三步工作简化为两步工作.
四、小结
提纲式(略).再一次突出交集和并集两个概念中“且”,“或”的含义的不同.
五、作业
习题1至8.
笔练结合板书.
倾听.修改练习.掌握方法.
观察.思考.倾听.理解.记忆.
倾听.理解.记忆.
回忆、再现学习内容.
落实教学目标
介绍解题技能技巧.
学习内容条理化.
课堂教学设计说明
1.本教学设计方案除继续遵循“集合”方案中的“主体教学思想”外,着力研究直观性原则在教学中的应用及多媒体(投影仪)的助学作用.
2.反演律可根据学生实际酌情使用.
交集并集教案2
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越越广泛的领域种得到应用。
目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的`集合;
教学过程:
一、引入题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布题),即是一些研究对象的总体。
阅读本P2-P3内容
二、新教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)
6.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言描述一个集合,但这将给我们带很多不便,除此之外还常用列举法和描述法表示集合。
(1)列举法:把集合中的元素一一列举出,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{xx-3>2},{(x,y)y=x2+1},{直角三角形},…;
例2.(本例2)
说明:(本P5最后一段)
思考3:(本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)y= x2+3x+2}与 {yy= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)堂练习(本P6练习)
三、归纳小结
本节从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
四、作业布置
书面作业:习题1.1,第1- 4题
五、板书设计(略)
交集并集教案3
一、教学目标
【知识与技能】
理解交集、并集的概念。掌握有关集合的术语和符号,会用它们正确的表示一些简单的集合。
【过程与方法】
经历探索集合的交与并的过程,学会用集合的.术语和符号,求两个集合的交集、并集。
【情感态度价值观】
在探索归纳的过程中,认识由具体到抽象的思维过程。
二、教学重难点
【教学重点】
理解交集与并集的概念。
【教学难点】
会求集合的交集和并集。
三、教学过程
(一)引入新课
四、板书设计(略)
交集并集教案4
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2))能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
教学重点:集合的交集与并集的概念;
教学难点:集合的交集与并集 “是什么”,“为什么”,“怎样做”;
教学过程:
一、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、新课教学
1、并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Unin)
记作:A∪B读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的.集合(重复元素只看成一个元素)。
例题1求集合A与B的并集
①A={6,8,10,12} B={3,6,9,12}
②A={x|-1≤x≤2} B={x|0≤x≤3}
(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersectin)。
记作:A∩B读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集
③A={6,8,10,12} B={3,6,9,12}
④A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解
例3(P12例1):理解所给集合的含义,可借助venn图分析
例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
4、集合基本运算的一些结论:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,则A B,反之也成立
若A∪B=B,则A B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
三、课堂练习(P13练习)
四、归纳小结
五、作业布置
1、书面作业:P13习题1.1,第6-12题
补充:
(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=
(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z
2、提高内容:
(1)已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且,试求p、q;
(2)集合A={x|x2+px-2=0},B={x|x2-x+q=0},若A B={-2,0,1},求p、q;A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且A B ={3,7},求B
备选例题
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
当a = –3时,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
当a = 1时,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
当a = –1时,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1<x<1},B = {x | x<a},
(1)若A∩B = ,求a的取值范围;
(2)若A∪B = {x | x<1},求a的取值范围.
【解析】(1)如下图所示:A = {x | –1<x<1},B = {x | x<a},且A∩B= ,
∴数轴上点x = a在x = – 1左侧.
∴a≤–1.
(2)如右图所示:A = {x | –1<x<1},B = {x | x<a}且A∪B = {x | x<1},
∴数轴上点x = a在x = –1和x = 1之间.
∴–1<a≤1.
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何实数时,A∩B 与A∩C = 同时成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同时成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 将3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
当a = 5时,A = {x | x2 – 5x + 6 = 0} = {2,3},此时A∩C = {2},与题设A∩C = 相矛盾,故不适合.
当a = –2时,A = {x | x2 + 2x – 15 = 0} = {3,5},此时A∩B 与A∩C = ,同时成立,∴满足条件的实数a = –2.
交集并集教案5
学时:1学时
[学习引导]
一、自主学习
1.阅读课本.
2.回答问题
(1)本节内容有哪些重要的数学概念?
(2)交集与并集的区别是什么?
(3)交集与并集分别有哪些性质?
(4)用了哪些图形来直观分析和理解交集和并集的意义?
3完成练习
4、小结
二、方法指导
1、有限集常用Venn图来分析,数集常用数轴来分析问题。数形结合分析直观简便。
2、注意“或”“且”的区别。
3、学习时注意交集、并集表示的三种语句:自然语言、符号语言、图形语言
4.学习交集与并集的性质时注意结合Venn图或数轴来理解。
[思考引导]
一、提问题
1.两个非空集合的交集一定是非空集合吗?
2.若两个集合满足,则A与B有什么关系?若呢?
3.如何理解?
一、变题目.
1设集合A={1,x+2},B={x,y},若A∩B={2},求A∪B.
2.已知集合,若,求实数的取值范围.
[总结引导]
交集的定义:
并集的定义:
交集的性质:
并集的性质:
[拓展引导]
1.已知A={(x,y)|x+y=2},B={(x,y)|x-y=4},那么集合A∩B为()
A、x=3,y=1B、(3,-1)C、{3,-1}D、{(3,-1)}
2.已知,则()
3.已知,求使得的实数的取值范围.
4.完成作业:习题1—3A组的第1、2、3、4题.
参考答案
[思考引导]
一、提问题
1.不一定
2.,3.集合A与集合B没有公共元素
二、变题目
1.;
2.;
[拓展引导]
1.D;
2.1;
3.
集合的并集和交集教案
第3课时集合的并集和交集
(一)教学目标
1.知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.
(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。
(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。
2.过程与方法
通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力.
3.情感、态度与价值观
通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值.
(二)教学重点与难点
重点:交集、并集运算的含义,识记与运用.
难点:弄清交集、并集的含义,认识符号之间的区别与联系
(三)教学方法
在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合.
(四)教学过程
教学环节教学内容师生互动设计意图
提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算.
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.
生:集合A与B的元素合并构成C.
师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算.生疑析疑,导入新知
形成
概念
思考:并集运算.
集合C是由所有属于集合A或属于集合B的元素组成的,称C为A和B的并集.
定义:由所有属于集合A或集合B的元素组成的集合.称为集合A与B的并集;记作:A∪B;读作A并B,即A∪B={x|x∈A,或x∈B},Venn图表示为:
师:请同学们将上述两组实例的共同规律用数学语言表达出来.
学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.
应用举例例1设A={4,5,6,8},B={3,5,7,8},求A∪B.
例2设集合A={x|–1<x<2},集合B={x|1<x<3},求A∪B.
例1解:A∪B={4,5,6,8}∪{3,5,7,8}={3,4,5,6,7,8}.
例2解:A∪B={x|–1<x<2}∪{x|1<x<3}={x=–1<x<3}.
师:求并集时,两集合的相同元素如何在并集中表示.
生:遵循集合元素的互异性.
师:涉及不等式型集合问题.
注意利用数轴,运用数形结合思想求解.
生:在数轴上画出两集合,然后合并所有区间.同时注意集合元素的互异性.学生尝试求解,老师适时适当指导,评析.
固化概念
提升能力
探究性质①A∪A=A,②A∪=A,③A∪B=B∪A,④∪B,∪B.
老师要求学生对性质进行合理解释.培养学生数学思维能力.
形成概念自学提要:
①由两集合的所有元素合并可得两集合的并集,而由两集合的公共元素组成的集合又会是两集合的一种怎样的运算?
②交集运算具有的运算性质呢?
交集的定义.
由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集;记作A∩B,读作A交B.
即A∩B={x|x∈A且x∈B}
Venn图表示
老师给出自学提要,学生在老师的引导下自我学习交集知识,自我体会交集运算的含义.并总结交集的`性质.
生:①A∩A=A;
②A∩=;
③A∩B=B∩A;
④A∩,A∩.
师:适当阐述上述性质.
自学辅导,合作交流,探究交集运算.培养学生的自学能力,为终身发展培养基本素质.
应用举例例1(1)A={2,4,6,8,10},B={3,5,8,12},C={8}.
(2)新华中学开运动会,设
A={x|x是新华中学高一年级参加百米赛跑的同学},B={x|x是新华中学高一年级参加跳高比赛的同学},求A∩B.
例2设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.学生上台板演,老师点评、总结.
例1解:(1)∵A∩B={8},∴A∩B=C.
(2)A∩B就是新华中学高一年级中那些既参加百米赛跑又参加跳高比赛的同学组成的集合.所以,A∩B={x|x是新华中学高一年级既参加百米赛跑又参加跳高比赛的同学}.
例2解:平面内直线l1,l2可能有三种位置关系,即相交于一点,平行或重合.
(1)直线l1,l2相交于一点P可表示为L1∩L2={点P};
(2)直线l1,l2平行可表示为
L1∩L2=;
(3)直线l1,l2重合可表示为
L1∩L2=L1=L2.提升学生的动手实践能力.
归纳总结并集:A∪B={x|x∈A或x∈B}
交集:A∩B={x|x∈A且x∈B}
性质:①A∩A=A,A∪A=A,②A∩=,A∪=A,③A∩B=B∩A,A∪B=B∪A.学生合作交流:回顾→反思→总理→小结
老师点评、阐述归纳知识、构建知识网络
课后作业1.1第三课时习案学生独立完成巩固知识,提升能力,反思升华
备选例题
例1已知集合A={–1,a2+1,a2–3},B={–4,a–1,a+1},且A∩B={–2},求a的值.
【解析】法一:∵A∩B={–2},∴–2∈B,∴a–1=–2或a+1=–2,解得a=–1或a=–3,当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2}.
当a=–3时,A={–1,10,6},A不合要求,a=–3舍去
∴a=–1.
法二:∵A∩B={–2},∴–2∈A,又∵a2+1≥1,∴a2–3=–2,解得a=±1,当a=1时,A={–1,2,–2},B={–4,0,2},A∩B≠{–2}.
当a=–1时,A={–1,2,–2},B={–4,–2,0},A∩B={–2},∴a=–1.
例2集合A={x|–1<x<1},B={x|x<a},(1)若A∩B=,求a的取值范围;
(2)若A∪B={x|x<1},求a的取值范围.
【解析】(1)如下图所示:A={x|–1<x<1},B={x|x<a},且A∩B=,∴数轴上点x=a在x=–1左侧.
∴a≤–1.
(2)如右图所示:A={x|–1<x<1},B={x|x<a}且A∪B={x|x<1},∴数轴上点x=a在x=–1和x=1之间.
∴–1<a≤1.
例3已知集合A={x|x2–ax+a2–19=0},B={x|x2–5x+6=0},C={x|x2+2x–8=0},求a取何实数时,A∩B与A∩C=同时成立?
【解析】B={x|x2–5x+6=0}={2,3},C={x|x2+2x–8=0}={2,–4}.
由A∩B和A∩C=同时成立可知,3是方程x2–ax+a2–19=0的解.将3代入方程得a2–3a–10=0,解得a=5或a=–2.
当a=5时,A={x|x2–5x+6=0}={2,3},此时A∩C={2},与题设A∩C=相矛盾,故不适合.
当a=–2时,A={x|x2+2x–15=0}={3,5},此时A∩B与A∩C=,同时成立,∴满足条件的实数a=–2.
例4设集合A={x2,2x–1,–4},B={x–5,1–x,9},若A∩B={9},求A∪B.
【解析】由9∈A,可得x2=9或2x–1=9,解得x=±3或x=5.
当x=3时,A={9,5,–4},B={–2,–2,9},B中元素违背了互异性,舍去.
当x=–3时,A={9,–7,–4},B={–8,4,9},A∩B={9}满足题意,故A∪B={–7,–4,–8,4,9}.
当x=5时,A={25,9,–4},B={0,–4,9},此时A∩B={–4,9}与A∩B={9}矛盾,故舍去.
综上所述,x=–3且A∪B={–8,–4,4,–7,9}.
【交集并集教案】相关文章:
《爱莲说》教案锦集10-11
《兰亭集序》教案12-12
美术教案锦集7篇09-12
大班教案锦集【5篇】03-30
有关小学美术教案锦集04-07
中班教案(锦集9篇)11-12
中班教案锦集【6篇】08-10
大班教案锦集7篇01-03
大班教案锦集(4篇)04-24
小班教案[锦集4篇]04-29