高中数学教案优秀

时间:2024-09-03 08:40:14 教案 我要投稿
  • 相关推荐

高中数学教案优秀

  作为一名辛苦耕耘的教育工作者,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。写教案需要注意哪些格式呢?下面是小编整理的高中数学教案优秀,欢迎大家分享。

高中数学教案优秀

高中数学教案优秀1

  提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

  体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。高二下学期必修3有三章(算法初步;概率;统计);选修2—3有三章(计数原理;随机变量及其分布;统计案例);选修4—5(不等式)。

  必修3,主要涉及三章内容:

  第一章算法初步

  1、算法的含义、程序框图。通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。

  2、基本算法语句。经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。

  3、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  第二章概率

  1、在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。

  2、通过实例,了解两个互斥事件的概率加法公式。

  3、通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

  4、了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的`意义(参见例3)。

  5、通过阅读材料,了解人类认识随机现象的过程。

  第三章统计

  1、随机抽样、能从现实生活或其他学科中提出具有一定价值的统计问题。结合具体的实际问题情境,理解随机抽样的必要性和重要性。在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。

  2、用样本估计总体。通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。通过实例理解样本数据标准差的意义和作用,学会计算数据标准差。在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性。形成对数据处理过程进行初步评价的意识。

  3、变量的相关性。通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。经历用不同估算方法描述两个变量线性相关的过程。知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。

  选修2—3,主要涉及三章内容:

  第一章计数原理

  计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。是学习排列、组合和概率理论的基础,也是培养学生数学思维能力的良好素材。

  1、重视基本概念教学,正确区分分类与分步,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,并能应用两个原理解决问题,分类要做到不重不漏,分步要做到步骤完整。

  2、在分析排列、组合应用题时,应充分利用列举法和树形图进行分析,让学生从直观,感性上理解问题,辨别排列与组合问题,总结规律,探究快捷解决问题的途径。

  3、通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题。的含义。

  第二章随机变量及其分布列

  学生将在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差及内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念,观察、分析问题的意识。

  1、随机观念贯穿于这部分内容的始终。首先要认识离散型随机变量的分布列对刻划随机现象的重要性;其次掌握超几何分布、二项分布是两个非常重要的应用广泛的概率模型。

  2、通过实例,理解所有的概念,避免过分注重形式化的倾向。教学中不应简单从抽象的定义出发,机械地模仿,得出概念。重点是理解离散型随机变量及其分布列、均值、方差、正态分布的概念。

  第三章统计案例

  学生将在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。

  1、教学中应该通过生活中详实事例理解回归分析的方法,其步骤为通过散点图,直观地了解两个变量的关系,然后,通过最小二乘法建立回归模型,最后通过分析残差,相关指数等,评价模型的好坏。

  2、教学中应用实例分析总结得出独立性检验的意义,并且认真体会独立性检验的基本思路,类似于反证法,会用类比的思想方法得出独立性检验的基本步骤。

  3、回归分析注重步骤和过程,鼓励学生经历数据处理的全过程,要尽量使用统计图直观展示两个变量的关系,培养学生对数据的直观感觉,有条件的学校要利用统计软件画散点图、进而直观判断它们是否线性相关,然后在线性相关前提下尝试用线性回归模型来拟合,最后还通过相关指数和残差分析来判断拟合效果。

  选修4—5,主要涉及一章内容:

  第一章不等式

  在本专题教学中,教师应引导学生了解重要的不等式都有深刻的数学意义和背景,例如本专题给出的不等式大都有明确的几何背景。学生在学习中应该把握这些几何背景,理解这些不等式的实质。主要考察绝对值不等式的解法,这也是我们讲课的重点。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。

  1、回顾和复习不等式的基本性质和基本不等式。

  2、理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:

  (1);

  (2);

  (3)会利用绝对值的几何意义求解以下类型的不等式:

  高二下学期的授课内容为必修3和选修2—3及选修4—5,必修3和选修2—3的前两章在期中考试前完成(约在5月1日前完成);选修2—3第三章及选修4—5在期末考试前完成(约在7月10日前完成)。

  提高数学设计探究性课堂教学设计的能力。建立一个充满生命活力的、开放的课堂教学运行机制,使教学设计真正适合学生发展的需要。建立中学数学探究性课堂教学设计的多元化评价机制。提高教师对探究性数学教学设计的评价能力掌握科学的评价方法,推动中学数学探究性课堂教学向前发展。

  告知教学目标,讲述;板书或由问题引入等引起注意,激发兴趣。复习旧知识,提问;小测验等激活原有知识。呈现新知识,设计先行组织者、图表;教师讲授;指导学生自学;提供直观教材等选择性知觉新信息。

  1、学习兴趣与基础

  经过一段时间的观察和调查,我发现班上有一半学生对数学学习没有兴趣,问其原因,大部分都说数学太难,学不懂,老师讲的都不明白,基础太弱,导致课堂上无所事事。这样越来越对数学没有兴趣。

  2、学习习惯

  少部分学生有主动学习的行为,比较喜欢上数学课,学习热情也很高,和老师讲常交流。但仍有大部分学生学习懒散、学习习惯差,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业抄袭等等不良现象。

  1、加强基础知识教学。了解到学生目前的学习情况,大部分学生对初中的相关知识掌握不好,利用自习课或课余时间为他们补充初中知识的盲点,加强基础知识。同时在上课的时候,以基础简单题目为主,争取让大部分学生在课堂上有所收获。

  2、加强合作学习。对于班级出现的两极分化情况,发动成绩好的学生带动基础薄弱的学生,促使大家共同进步。

  高二下学期

  算法初步(必修3)9课时

  概率(必修3)10课时

  统计(必修3)8课时

  计数原理(选修2—3)10课时

  随机变量及其分布(选修2—3)15课时

  统计案例(选修2—3)3课时

  不等式(选修4—5)5课时

高中数学教案优秀2

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的`任意选修内容,教学时数不做统一规定。四、教学内容与要求

  (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

  了解:初步知道知识的含义及其简单应用。

  理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)

  第2单元不等式(8学时)

  第3单元函数(12学时)

  第4单元指数函数与对数函数(12学时)

  第5单元三角函数(18学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第9单元立体几何(14学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第1单元三角计算及其应用(16学时)

  第2单元坐标变换与参数方程(12学时)

  第3单元复数及其应用(10学时)

高中数学教案优秀3

  函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。

  教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。

  1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。

  2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性。

  3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的`概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。

  对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈r在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。

  一、问题情景

  1、观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?

  可以看到两个函数的图像都关于y轴对称。

  从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

  对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于r内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。

  2、观察函数fx=x和fx=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

  可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈r都有fx=fx。此时,称函数y=fx为奇函数。

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1奇、偶函数的定义

  如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。

  2、提出问题,组织学生讨论

  (1)如果定义在r上的函数fx满足f2=f2,那么fx是偶函数吗?fx不一定是偶函数

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称)

  3奇、偶函数的定义域有什么特征?(奇、偶函数的定义域关于原点对称)

  三、解释应用

  [例题]

  1、判断下列函数的奇偶性。

  注:①规范解题格式;

  ②对于5要注意定义域x∈1,1]。

  2、已知:定义在r上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。

  解:1任取x<0,则x>0,∴fx=x1x,

  而fx是奇函数,∴fx=fx。∴fx=x1x。

  (2)当x=0时,f0=f0,∴f0=f0,故f0=0

  3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,证明如下:

  任取x1>x2>0,则x1

  ∵fx在∞,0上是减函数,∴fx1>fx2。又fx是偶函数,∴fx1>fx2。

  ∴f(x在0,+∞)上是增函数。

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练习]

  1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。

  2fx=x3|x|的大致图像可能是

  3、函数fx=ax2+bx+c,a,b,c∈r,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是r上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。

  四、拓展延伸

  1、有既是奇函数,又是偶函数的函数吗?若有,有多少个?2设fx,gx分别是r上的奇函数,偶函数,试研究:1fx=fx·gx的奇偶性。 2gx=|fx|+gx的奇偶性。

  3、已知a∈r,fx=a,试确定a的值,使fx是奇函数。

  4、一个定义在r上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教案优秀4

一、上学期工作回顾及学生情况分析:

  上学期期末参加考试人数31人,及格率%,平均分86分,最高分98分,最低分43,优生率61%。

  本班学生总体上说比较爱学,对一些基础的知识大部分学生能扎实的掌握。但也有部分学生接受知识的能力相对较弱,学习基础又不扎实,从而导致学习成绩不理想。本学期将针对班级实际情况,切实提高每位学生的学习能力和学习成绩。

  二、本册教材的教学任务、要求及重点:

  教学任务:

  本册教材内容包括:比例,圆柱、圆锥和球,简单的统计,整理和复习等四个部分。

  教学要求:

  1、掌握圆柱、圆锥的特征,掌握几何体体积的'计算公式,学会正确计算它们的体积。

  2、学会绘制复式统计表和统计图,并能看懂、分析统计图表中的数据所说明的问题。

  3、理解比例的意义和性质,解比例,能正确判别成正比例或反比例的量,学会解答比较容易的比例应用题。

  4、通过小学数学知识的系统复习整理,巩固和深化所学的数学知识,提高计算和解题能力,培养独立思考、不怕困难的精神。

  教学重点:

  圆柱、圆锥,比例的应用,小学阶段主要数学知识的复习。

  三、教学措施:

  1、在教学中,为学生提供创造参与教学活动的情境,努力构建“和谐有效”课堂,通过操作、观察、讨论、比较等活动,先形象具体,后抽象概括,帮助学生理解和掌握知识点。

  2、在教学中还要注意抓住新旧知识的内在联系,教给学生恰当的学习方法,使学生了解知识间的横向联系。

  3、在教学中要重视学生的学法指导,培养学生的迁移、类推能力。

  4、抓好育尖补差工作,利用课余时间为他们补课。

【高中数学教案优秀】相关文章:

高中数学教案04-19

高中数学教案范文06-14

(优)高中数学教案07-25

高中数学教案精选15篇02-18

高中的优秀作文11-17

高中优秀作文06-20

优秀高中作文07-15

高中数学教案(汇编15篇)12-30

高中数学教案(集锦15篇)03-07

高中数学教案(集合15篇)09-28