《组合图形的面积》教案

时间:2024-07-06 10:17:41 教案 我要投稿

《组合图形的面积》教案

  作为一位优秀的人民教师,就不得不需要编写教案,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?以下是小编整理的《组合图形的面积》教案,欢迎大家分享。

《组合图形的面积》教案

《组合图形的面积》教案1

  一、教材分析

  《组合图形面积》是冀教版九年义务数学教科书五年级上册的重要内容。学生在以前已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册又学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。

  二、创新点

  (1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。

  (2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。

  三、教学目标以及重难点

  有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:

  1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

  过程与方法:

  能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。情感态度与价值观:

  能运用所学的知识,初步解决生活中组合图形的实际问题。教学重点:

  在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

  教学难点: 根据组合图形的条件,有效地选择计算方法。教学准备:

  七巧板、ppt课件、简单图形学具、少先队中队旗实物

  1、七巧板拼图游戏,初步感知组合图形。

  用准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?选取几个有创意的图案在实物投影仪上展示和让学生汇报。

  2、自主探究,汇报交流。让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。

  设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。

  出示例题:出示几个图形让学生先商量出计算方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的'方法求一求它的面积?看谁的方法多。

  为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。

  汇报时先汇报分的方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。

  接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。

  习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的培养。

  我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。

  这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。

  最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。

  3、综合应用,巩固提高。

  练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题采取学生独立解决与合作交流的形式

  A、可以任意分割

  B、分割为最少的学过的图形

  C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。

  4、回顾反思,自我评价。

  通过本节课的学习,你有什么收获?借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。

《组合图形的面积》教案2

  一、教材内容:

  九年义务教育六年制小学教科书第九册第三单元第五节《组合图形面积的计算》。即P90---91页的例题和练习题。

  教学要求:

  使学生初步了解组合图形面积的计算方法,会计算一些较简单的组合图形的面积。

  使学生掌握组合图形常用的割补方法。

  教学重点、难点:

  教学重点:利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

  教学难点

  根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

  教学过程:

  以寻标追源为教学模式,以目标教学为基本教学形式,以尝试法为主要教学手段。

  前置回顾,展示目标;

  在发散思维中探究新知,精讲点拨,完成目标;

  概括总结,反馈矫正。

  ㈠、引标:创设情境,引导探索

  ⒈旧知辅垫,诱发注意

  电脑显示单车、榨栏、阶梯组合图,标出几种已学过的三角形、平行四边形、长方形、梯形,让学生说出名称和面积计算字母公式。

  (这里通过实物感知,了解各平面图形的特征,说出面积公式,加深对旧知识的复习,沟通新旧知识的联系,为学习新知识做好铺垫。)

  设景感知,激活思考

  电脑显示一幅美丽的画面,一位小天使对一面墙提出问题:你能计算这幢房的侧面墙的面积吗?从而揭示课题《组合图形面积的计算》。

  (这样通过直观并带有趣味的引导,使学生产生好奇心,引起学习动机,迫切试一试的愿望。从而吸引了学生的注意力,激发了学生的求知欲,从这里打开学生通道,促使学生想方设法去找组合图形面积的计算方法。)

  (二)寻标:提出问题,寻找目标

  叫学生齐读课题后,问:读了课题,你们想知道组合图形的什么知识?(组合图形面积如何计算)好,请同学们看书P90---91页,能否自己解决这些知识,看看它对这些知识是怎样讲的。

  (在这里老师先不做讲解,让学生带着求知欲看书,这是根据尝试原则,让学生在自我评价中获取新知识,它是教学的一种有效尝试。)

  (三)探标:追源问底,引导发现

  提出问题:为了求组合图形的面积,书上是如何讲的?、除了书上的分割方法外,你还有别的分割方法来求这个组合图形的`面积吗?从而引发学生的发散思维。

  电脑显示学生可能想到的分割方法:

  ①分成一个三角形和一个长方形;

  ②分成两个梯形;

  ③分成三个三角形。

  其它方法给予口头定正正误。

  2.展示各种想法,得出组合图形面积的求法。

  ⒊发散引导,找出新的解法:

  让学生观察分的方法后,提出问题:刚才所讲的都是把组合图形分成几个已学过的平面图形,那还有除了分以外的别的方法吗?

  电脑显示补的方法,并指出平面组合图形求面积的方法,常用的方法就是分、补两种方法。

  (这里有目的运用迁移规律,启发引导学生,教给学生获取知识的方法,以旧探新,引导学生看书、讨论、进行观察比较、概括,找到解决问题的方法,培养学生的探索精神。也有利于发挥学生的主体作用,同时使学生在探索规律的过程中发展思维能力。)

《组合图形的面积》教案3

  教学内容:

  教科书P75-76页的内容

  教学目标:

  1、知识与技能:

  (1)明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算;

  (2)能正确地分析图形,并能正确地求组合图形的面积。

  2、能力目标:

  (1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;

  (2)培养学生的自主探索、合作学习的能力。

  3、情感与态度:

  (1)培养学生积极参与数学学习活动的习惯;

  (2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。

  教学重点:

  学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  教学过程:

  一、创设情境,激趣导入

  1、欣赏图片媒体出示:

  师:数学真是无处不在呀!瞧!在很久很久以前,我国新疆地区有一座神秘的楼兰古国,那时人们安居乐业,看!(一座座美丽的房子)你们发现了什么?

  师让学生说出有哪些基本图形组成并认识组合图形,感受“数学图形之美”

  板书:组合图形

  3、复习平面图形面积计算。

  二、自主学习,探究新知

  1、出示(一座房子的侧墙的图)

  师:考古学家们在楼兰古国的遗址发现了其中的一堵保存比较好的墙,想知道

  它的面积有多大?你有办法计算吗?

  2、师:考古学家们要计算组合图形的面积来解决问题。其实,我们的生活中也有很多需要计算组合图形的面积的问题呢!瞧!淘气的好朋友小华家买新房,计划在客厅铺地板(出示客厅图)

  (1)师:请你估一估,小华家的客厅面积大约是多少?

  想一想,找同学来回答

  展示学生的做法,并请他说说思考过程。

  (2)师请生小组合作,讨论:计算小华家的客厅的实际面积是多少?

  方法有哪些?

  师:如果要你求这个组合图形的`面积,你可以怎样求?

  (3)生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来……

  师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

  师:还有其他方法吗?

  (生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你启发吗?(得出用长方形面积减去三角形的面积)

  板书:贴+写

  师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)(依据学生回答,教师适时板书:合理割补、分块求积、加减组合)

  2、基本练习

  老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?

  (汇报)

  在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

  学生自学例题及补充题,然后交流各题的解题策略,并引导比较异同。

  三、实践活动

  师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

  出示队旗:其实,我们的中队旗就是一个组合图形。

  (1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

  (2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

  (3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

  用你认为简单的方法进行计算。先做好的小组上来板书。

  反馈:你们是怎么思考的?

  师:跟你们估计的结果比较一下,看谁估计的最正确,掌声送给他!

  四通过这节课的学习,你有什么收获?

  希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

  五、巩固练习,深化理解

  1、展示学生课前做的七巧板拼图作品。

  2、你能计算你的作品的面积吗?

  小组合作、测量所需条件并计算面积。

  指名交流计算方法,媒体随机出示学生解题策略。

《组合图形的面积》教案4

  一、知识要点

  在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

  二、精讲精练

  【例题1】求图中阴影部分的面积(单位:厘米)。

  【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

  62×3.14× =28.26(平方厘米)

  答:阴影部分的面积是28.26平方厘米。

  练习1:

  1.求下面各个图形中阴影部分的面积(单位:厘米)。

  2.求下面各个图形中阴影部分的面积(单位:厘米)。

  3.求下面各个图形中阴影部分的面积(单位:厘米)。

  【例题2】求图中阴影部分的面积(单位:厘米)。

  【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

  从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

  3.14× -4×4÷2÷2=8.56(平方厘米)

  答:阴影部分的面积是8.56平方厘米。

  练习2:

  1.计算下面图形中阴影部分的面积(单位:厘米)。

  2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

  【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

  【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

  答:长方形长方形ABO1O的面积是1.57平方厘米。

  练习3:

  1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

  2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

  3.如图所示,AB=BC=8厘米,求阴影部分的面积。

  【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

  【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

  I和II的面积相等。

  因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

  6×4=24(平方厘米)

  答:阴影部分的面积是24平方厘米。

  练习4:

  1.如图所示,求四边形ABCD的面积。

  2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

  3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

  【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

  【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。

  半径:4÷2=2(厘米)

  扇形的'圆心角:180-(180-30×2)=60(度)

  扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

  三角形BOC的面积:7÷2÷2=1.75(平方厘米)

  7-(2.09+1.75)=3.16(平方厘米)

  答:阴影部分的面积是3.16平方厘米。

  练习5:

  1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

  2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

  3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

  组合图形面积计算(二)

  一、知识要点

  对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

  二、精讲精练

  【例题1】如图所示,求图中阴影部分的面积。

  【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

  [3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

  (20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

  答:阴影部分的面积是107平方厘米。

  练习1:

  1.如图所示,求阴影部分的面积(单位:厘米)

  2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

  【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

  【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。

  3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

  解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

  3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

  答:阴影部分的面积是16.82平方厘米。

  练习2:

  1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

  2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

  3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

  【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

  【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

  空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

  阴影部分的面积:10×10-21.5×2=57(平方厘米)

  解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

  (10÷2)2×3.14×2-10×10=57(平方厘米)

  答:阴影部分的面积是57平方厘米。

  练习3:

  1.求下面各图形中阴影部分的面积(单位:厘米)。

  2.求下面各图形中阴影部分的面积(单位:厘米)。

  3.求下面各图形中阴影部分的面积(单位:厘米)。

  【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

  【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

  既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

  阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

  答:阴影部分的面积是3.87平方厘米。

  练习4:

  1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

  3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

  【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

  【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

  3.14×(30×2)×1/4-30=17.1(平方厘米)

  答:阴影部分的面积是17.1平方厘米。

  练习5:

  1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

  2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

  3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《组合图形的面积》教案5

  教学内容:北师大版小学数学五年级上册第5单元"组合图形面积"。 (p75~76)

  教材分析:本册教材的第2单元,学生已经学习了平行四边形、三角形与梯形的面积。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面能将所学的知识进行综合,提高学生综合能力。在"组合图形面积"中,重点探索计算组合图形面积的计算方法。由于本单元是小学阶段平面几何直线型内容的最后章节,因此,教材所安排的内容除了巩固学生所学的知识外,更重要的是将解决问题的思考策略渗透其中。

  教学目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  教学重点:探索组合图形面积的计算方法。

  教学难点:根据组合图形的条件,有效地选择计算方法。

  教师准备:为学生每人准备探索时用的题签1,题签2,学生准备:尺子

  教学过程:

  一、复习:

  课件出示:

  师:认识吗?面积会算吗?选一个说说。

  师:三角形的面积计算方法是底乘以高除以2,这里的除以2你是怎么理解的?

  师小结:我们把三角形面积的转化成平行四边形来推导出三角形的面积计算方法的。

  二、引入新课。

  1、过渡:刚才的图形我们都是可以通过公式可以直接计算的,那这样的图形能直接计算吗?

  课件出示问题:

  师:这个问题,能用你学过的知识想办法解决吗?

  布置自主探索任务:

  ○1明确探索的要求;(把想法画在图上,并试着求出地板的面积)。

  ○2交流要求:想好办法的同学,把你的想法告诉你的同桌,比较两的想法有什么不同。

  ○3提示:实在有困难的'同学,可以与同桌进行合作。

  2、生独立尝试,师巡视,并发现典型。

  3、反馈:

  师:谁来展示你的解决办法?

  (实物投影展示,辅助学生说清楚:想法与解法。及中间数据的来源等。)

  补充的知识有:用虚线画辅助线;将学生的"割"明确为"分"(画辅助线)。

  可能出现的答案有:

  对于

  a、出现补的方法,在学生说的同时,用实物模型来演示补的过程及说明算法。

  b、出现又割又补的知识,让学生展示,并帮助理解,但最后不再统一展示。

  4、归纳:师:同学们,刚才咱们想出了这么多的方法,算出地板的面积是33平方米,我们一起来给这些方法来分分类吧,你会怎么分呢?分一分,补一补。

  师:我们可以把这个图形通过分一分,也可以说是这个图形是如图1由一个小长方形与一个大长方形组合成,或如图3由两个梯形组合而成,或如图4由一个长方形与一个正方形组合而成。像这样的图形,我们一般称之为组合图形。(板书:组合图形)今天,我们学的是组合图形的面积。(板书:的面积)。

  师:求这个客厅的地板问题,同学们想出了各种各样的方法,这么多的方法,你个人更喜欢哪些方法呢?

  (生可能会说到:分成的图形个数少比个数多要简单些与分成长方形、正方形要比梯形在计算上要简单些。)

  师:同学生,刚才我们通过求客厅的地板问题解决了求组合图形的面积问题,在这么多的方法中,还是有一些方法,相对更简单些。比如,分成两个图形的比分成三个图形的要相对简单些;同样分成两个图形的,分成长方形、正方形的比分成梯形、三角形的在计算上相对又要简单些。

  三、练习。

  过渡:所以,我们在解决这类问题时,可以考虑要尽量的……(简单些)。好,下面我们带着这样的想法,来看这个问题。

  课件出示:

  等生读明白题意后,布置练习纸。(每人三个练习图)。

  生独立尝试,师巡视,收集典型。

  反馈:将学生的典型作品,投影展示。

  可能的情况有:

  可能出现的其它问题有:请你来评价一下这两种方法。

  (分成了不是已学过的图形) (分得过细,数量上过多)

  过渡:那好,请看。

  课件出示:

  生独立完成。

  反馈、交流:

  请学生说清楚自己的想法,及解法。

  过渡:一个问题,同学生想出了这么多而又简单的方法,真是了不起。下面请看这里。

  出示:

  师:看哪些同学能很快地求出共要多少钱?

  反馈:只有一种"补"的解法。

  师:看来,求组合图形的面积,并不是所有的方法都可以的,有时,我们还得根据条件选择合适的方法。

  四、总结。

  1、学习了这一课,你学会了什么?

  2、最后,我们来轻松一下。

  课件出示:

  它们像什么?(马、飞机、鱼等)

  师:这些美丽而复杂的图形其实是由我国传统的智力玩具"七巧板"(动画演示,将切割线慢慢突出成下图。)的七个基本图形构成的,同学们,我们多去玩玩,还能拼出更多美丽而复杂的组合图形。或许,在拼的过程中还能为你带来不一样的启迪呢!

《组合图形的面积》教案6

  教材分析:

  《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

  教学目标:

  知识目标

  1、在自主探索的活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中有关组合图形的实际问题。

  过程和方法

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  情感、态度与价值观

  1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  2、渗透转化的数学思想和方法。

  教学重点:

  学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  教学难点:

  理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

  教学准备:

  多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫、认识组合图形

  1、介绍笑笑和她家的新房子

  师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)

  2、引导学生观察,复习有关平面图形面积的计算公式

  师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

  3、欣赏图片(课件出示一组图片)

  师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)

  4、教师总结,揭示课题并板书

  师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)

  二、创设情境、探究新知

  笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)

  1、估计地板的`面积

  请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)

  2、采用不同的方法求客厅的面积。

  同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

  (1)生动手画图

  (2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

  3、师生归纳方法并比较

  (1)观察找特点

  根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)

  (2)引导比较,对方法进行分类,找出最简单的方法

  师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)

  (3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)

  (4)学生独立计算,四人板演。

  (5)汇报交流,集体订正。

  (6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)

  4、归纳算法

  刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

  师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

  三、实际应用、解决问题

  1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)

  (1)学生拿出先准备好的图形,动手画

  (2)展示交流

  2、计算墙壁的面积

  观察图形选择方法独立计算汇报交流

  同学们帮笑笑解决了难题,相信她会很感激大家的,咱们一起听听她怎么说。[课件出示,笑笑说:同学们,你们真厉害!我在这里谢谢大家了。请大家再帮我一个忙吧,我们家想把这面墙(如下图)粉刷一遍,你们愿意帮我算算吗?](1)需要粉刷的面积一共是多少平方米?(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

  观察图形选择方法独立计算汇报交流

  3、求门油漆的面积。

  师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)

  (1)需要油漆的面积一共是多少?

  (2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

  四、归纳小结、提升知识

  这节课你学会了什么?

  (师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)

  五、拓展延伸

  师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

  1.6m 4 m 10

  板书设计:

  组合图形面积

  S=ab 分割

  S=aa S=ah 转化

  基本图形

  S=ah2 S=(a+b)2 添补

《组合图形的面积》教案7

  【教学内容】

  义务教育课程标准实验教科书(人教版)小学《数学(第九册)》第92-93页。

  【教学目标】

  1、在熟悉所学图形面积计算公式的基础上,通过拼一拼、找一找、分一分,并结合生活实际,会把组合图形分解成学过的的基本图形,计算出面积。

  2、能运用所学的知识解决生活中的组合图形的实际问题。

  3、培养学生动手操作能力,合作交流能力和空间想象能力。

  【教学重点】

  初步掌握组合图形面积的计算方法。

  【教学难点】

  正确、灵活地把组合图形转化为所学过的基本图形。

  【教学准备】

  多媒体课件、学生准备各种图形的卡片。

  一、

  展示汇报,建立概念。

  (一)拼图游戏,初步感知组合图形。

  师:师:课前老师发给了同学们一些图形,请你说说老师发给你的是什么图形,你能说出计算这个图形的面积公式吗?

  生:自由汇报。

  师:你们同桌商量下,利用这些图形拼成最美丽的图案,并说在复习所学的基本图形面积计算的基础上,通过学生拼一拼,说一说的活动,使学在头脑中对组合图

  说它们分别是由哪几个简单图形组合而成的。

  结合学生拼出图形有针对性的展示几组组合图形,预设下图:

  师:四人小组互相看一看、说一说,你们拼的这个图形分别是由哪些图形拼成的?

  师总结:像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)

  (二)找一找,说一说。

  师:其实生活中处处都有组合图形,现在你能说出课本P92页的组合图形是由哪些简单图形组合而成的吗?

  同桌互相说一说。

  师:老师还搜集了一幅生活情境中的图片,(课件出示主题图)请同学们找一找,在这幅图什么地方有组合图形?

  生认真观察后并指名回答。

  师:我们认识了组合图形,那么你们还想学习有关组合图形的哪些知识?

  学生畅所欲言......

  师:这节课我们重点学习组合图形的面积。(板书:面积)

  (一)小组活动,自主探索。

  师:请同学们观察下刚才拼得图形中哪个组合图形最像我们形产生感性的认识。

  为下面学习求组合图形的面积打下基础。学生在对组合图形的概念初步了解的基础上,引导学生找生活情境中的组合图形,由具体的实物抽象出几何图形,学生不但加深了对组合图形概念的理解,而且对数学知识与生活的紧密联系有了一定的认识。

  二、

  在探索过程中,寻求计算方法。

  主题图中房子的侧面墙的图?(课件出示例题)

  师:如何求这个组合图形的面积呢?先独立想想再小组交流。

  小组讨论:

  ①这个图形有哪些简单图形组合而成的?

  ②求这个组合图形的面积就是求哪几个图形的面积?

  ③怎样求?

  小组讨论,教师巡视并指导。

  小组汇报:

  小组1:把组合图形分成一个三角形和一个正方形。(教师在课件中演示分的过程)先分别算出三角形的面积和正方形的面积,再相加。(板书如下)

  =S三+S正

  小组2:把这个组合图形分成两个完全一样的梯形。(教师在课件中演示分的过程)先算一个梯形的面积,再乘以2。(板书如下)

  =S梯×2

  (二)引导学生总结方法。

  师:想想我们刚才是怎么求这个组合图形的面积的?

  学生自由回答。

  师:你认为哪种方法简单呢?

  学生说自己的想法。

  对于例题的教学,由于学生有了新课伊始的`拼组基础,每个学生对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。

  引导学生根据自己小组讨论的结果,总结求组合图形的方法,让每个学生都参与数学活动。

  三、

  利用新知,解决生问题。

  师总结:在计算组合图形面积时,先把组合图形分解成已学过的图形,然后分别求它们的面积再相加。但是,方法多种多样,同学们要认真观察,多动脑筋,选择自己喜欢而又简单的方法。

  师:请同学们打开数学书把例题补充完整。

  (三)质疑

  师:对于今天所学的新课你有什么疑难地方?计算面积时,还要注意些什么?

  学生根据自己的想法回答。

  以“你想利用今天所学的知识,做个()学生。”为主线完成以下练习。

  A、助人为乐的学生。现在你能帮工人叔叔算算这个指示路牌的面积吗?(课件出示,即课本P95页6)

  B、爱动脑筋的学生。要做一面这样的队旗需要多少布?你能想出几种方法?(课本P94页第2题)

  (先独立思考,再小组合作交流,最后师生共同分析,提升较简单的方法。)

  C、学会欣赏的学生。欣赏利用组合图形拼成的图案及其在生活中的应用。(课件出示)

  D、有创新精神的学生。利用所学过的简单图形,设计一幅美丽的图案,量出有用数据,并求出它的面积。

  鼓励学生用不同的方法进行计算,并引导学生寻找最简的方法,实现方法的最优化。

  以“你想利用今天所学的知识做个什么样的学生。”为主线出现不同层次的练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。

《组合图形的面积》教案8

  教学内容:92和93页练习十八

  教学目标:明确组合图形的意义;

  知道求组合图形的面积就是求几个图形面积的和(或差);

  能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

  教学过程:

  一、复习。

  “第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

  “第二个图形呢?”

  ......

  学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

  教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

  二、认识组合图形

  1、让学生指出92页页的四幅图有哪些图形?

  2、引导学生把下面的`图形,组合成多边形(展示台上拼)

  对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

  分别说出这些图形是由哪几个简单的图形组合而成。

  师:怎样计算这些组合图形的面积呢?(板题)

  二、组合图形面积的计算。

  1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

  订正,讨论第一图的两种方法。

  5×5+5×6÷2[5+(5+6)]×5÷2

  =25+15=16×5÷2

  =40(平方厘米)=40(平方厘米)

  2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

  图表示的是一间房子侧面墙的形状。

  它的面积是多少平方米?

  如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

  5×5+5×2÷2

  还能用其他的划分方法求出它的面积吗?(分组讨论)

  汇报讨论结果。可能有下面情况。

  [5+(2+5)]×(5÷2)÷2×2

  小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

  三、巩固初步

  1.做一做/书93页

  2.练习十八/第1题

  3.练习十八/第2题

  (1)由中队旗引入

  (2)算出它的面积。(单位:厘米)--可能有下面几种情况

  S总=S梯×2S总=S长-S三

  5.练习十八/第3、4题

  四、拓展练习

  练习十八8*

  课后记:

《组合图形的面积》教案9

  教学目标:

  1,认识组合图形,会把组合图形分解成已经学过的平面图形。

  2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。

  3,培养学生的观察能力和动手操作能力。

  教学重点:探索并掌握组合图形的面积计算方法。

  教学难点:理解并掌握组合图形的面积计算方法。

  一,复习引入

  1,师:大家知道哪些简单的平面图形?

  生:长方形,正方形,平行四边形,三角形-------

  师:今天老师是也带来了一些简单的平面图形,请看.

  (课间出示长,正,平,三,梯)

  师:大家知道他们的面积计算公式马吗?

  生说公式,同时师课间出示.

  师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!

  (课间出示;风筝房屋的侧面七巧板中队旗)

  师:你能看到那些简单的平面图形?同桌之间说说看。

  汇报:重点说中队旗分成两个梯形。

  引出“组合图形”的定义,课件出示定义。

  板书:组合图形

  2,寻找身边的`组合图形

  师:其实我们身边还有很多这样的组合图形,大家找找看。

  (教师窗户,防盗窗)

  师:今天我们就来学习怎么计算组合图形的面积?

  板书:的面积

  二,探究新知

  教学例4:房屋侧面

  1,先出示没有数字的图形

  师:可以直接利用我们学过的面积公式来计算吗?

  生:不能

  师:那可以怎样计算呢?同桌之间说说看?

  汇报:可以分成两个梯形,可以分成一个三角形和一个长方形

  师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。

  学生做,师巡视指导,搜集作品。,

  2,投影展示学生作品:

  方法一:转化成三角形+长方形

  让学生说一说他的做法,重点问转化成了什么图形?

  问:大家看懂了吗?每一步表示什么意思呢?

  掌声送回学生一

  方法二:转化成两个相同的梯形

  (多让其他学生说一说分发)

  3,比较两种方法

  课件同时出示两种做法

  师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?

  生:都是把组合图形分成成了已经学过的简单的平面图形。

  师:像这种分发在数学上叫分割法。板书:分割法

  分割

  板书:组合图形简单的平面图形

  求和

  小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。

  师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。

  三:练习

  1,“做一做”

  让学生独立完成,找一学生上黑板板演,找另一学生评价。

  在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)

  教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。

  2,中队旗

  先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。

  先讲两种分割法,重点讲解“填补法”

  师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?

  生:长方形的面积-三角形的面积=组合图形的面积

  师:这位同学的想法真独特,想这种方法叫填补法。

  板书:填补法

  师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。

  板书:求和

  小结:我们在怎么求出组合图形的面积的?

  强调:转化优化

  四:小结:这节课你有什么收获?

《组合图形的面积》教案10

  组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  1. 识组合图形。

  编写意图

  由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。

  首先教材提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。

  教学建议

  (1)教学中,可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。

  (2)观察实物注意从易到难,例如教材中的房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。

  (3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。

  2.例4及“做一做”。

  编写意图

  例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。

  “做一做”主要巩固组合图形面积计算,图示已经把菜地分解成一个平行四边形和一个三角形,只需分别计算出它们的面积,再求和。

  教学建议

  (1)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的'面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。

  (2)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可以结合学生提出的方法,让学生比较一下,哪种方法比较简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。

  (3)“做一做”可由学生独立完成,再说说是怎样算的。同时可以检查学生对平行四边形和三角形面积计算公式掌握的情况。

  3. 关于练习十八一些习题的说明和教学建议。

  第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的方法计算。第2题提出了“你能想出几种算法?”可以结合第2题进行讨论。一般有以下几种算法。

  ①求两个梯形面积的和(下左图)

  [(80-20+80)×30÷2]×2

  = (80-20+80)×30

  = 4200(cm2)

  ②求一个长方形和两个三角形面积的和(下中图)

  (80-20)×(30+30)+(30×20÷2)×2

  =(80-20)×(30+30)+30×20

  = 3600+600

  = 4200(cm2)

  ③用一个长方形的面积减去一个三角形(下右图)

  的面积

  80×(30+30)-(30+30)×20÷2

  =4200(cm2)

  第3、4、5题的思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。

  第8*题是选作题。根据长方形的长与宽,可以求出它的面积。

  18×12 = 216(m2)

  红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。

  从设计图可以得到:

  绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108 (m2)。

  红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4 = 54(m2)。

《组合图形的面积》教案11

  教学内容:新课标五年级上册92页———组合图形的面积

  教学目标:

  1、了解组合图形的面积的计算方法并能正确地进行计算

  2、培养学生的识图能力和分析能力

  3、培养学生交流合作及创新精神

  教学重难点:把组合图形分割成已学过的平面图形

  教学准备:多媒体课件、剪刀、纸片

  教学过程:

  一、 复习导入:

  (1)多媒体1展示已学过的平面图形:长方形、正方形、平行四边形、三角形、梯形,学生分别说出其面积公式

  (2)多媒体2展示几个组合图形,借机问这些图形与前面的图形有什么不同,得出组合图形由几个简单的图形组合而成

  (3)对于这些组合图形,它们的面积怎样计算呢?引出课题并说明本节课的学习任务

  二、参与活动,学习新知:

  1、认识组合图形

  师:组合图形在日常生活中比较常见,那你说一说所见到的组合图形由那些图形组合而成

  生1:教室的窗户是由长方形和正方形组合而成

  生2:房子的屋山由三角形和长方形组合而成

  生3:地面由正方形组合而成

  生4:梯子由一个一个的梯形组合而成

  师:我也带来了一些组合图形,请同学们看一下。(展示多媒体3房子、风筝、少先队队旗、七巧板)

  2、计算组合图形的面积

  多媒体4展示,让学生理解题意。

  师:拿出准备好的纸片、剪刀,用纸片代表侧面墙,现在请同学们动手操作一下,可以把它分成那些图形?(师巡回指导)

  师:那位同学到前面展示一下,并说说你的想法

  生1:把它分成一个三角形和一个正方形,然后把三角形和正方形的面积相加

  生2:把它分成两个完全一样的梯形,然后把它们的面积相加

  师:找两位同学把刚才两位同学的想法解答出来。

  (二生板书并订正)

  师:你喜欢哪种方法

  生:第一种或第二种并说明原因…………

  师:在计算组合图形的面积时有多种方法,同学们要认真观察,多动脑筋,选择自己喜欢而又简便的方法进行计算

  师:通过刚才的学习,你认为应该怎样计算组合图形的面积呢?

  生:…………

  师(总结):把组合图形分解成前面已经学过的简单图形,再把它们的面积相加。

  3、拓展与创新

  师:同学们刚才都做得很好,你愿意接受新的挑战吗?

  生:愿意

  多媒体5展示,让学生弄清题意,思考一下

  师:哪位同学上来展示一下,并说一下你的解题思路。

  让学生指着图形说解题思路。

  生1:把队旗沿中间分开,可以分成两个完全一样的梯形。上底是60cm,下底是80cm ,高是30cm,一个梯形的面积是(60+80)×30÷2,整个队旗的面积是(60+80)×30÷2×2

  生2:我是用整个图形的面积减去空白的面积就是队旗的.面积。长方形的长是80cm,宽是60cm,长方形的面积是80×60.三角形的底是60 cm,高是20cm,三角形的面积是60×20÷2,所以整个队旗的面积为80×60-60×20÷2

  生3:沿着三角形的顶点做一条竖直的线,队旗分为一个长方形和两个三角形。长方形的长是60cm,宽是60cm,长方形的面积是60×60。三角形的底是30cm,高是20cm,一个三角形的面积是20×30÷2,两个三角形的面积是20×30÷2×2,整个队旗的面积为60×60+20×30÷2×2

  师:请同学们把刚才同学的想法解答出来。

  本题有多种算法,可自由选择,作对即可。培养学生的思维拓展能力,学会从多角度思考并解决问题。

  三、 学生巩固练习

  教师展示习题,学生巩固强化多媒体6、7、8

  四、小结

  今天这节课你学到了那些知识?哪位同学起来说一下

  四、 布置作业

  练习十八1、3

《组合图形的面积》教案12

  教学目标:

  1.在自主探索的活动中,理解计算组合图形面积的多种方法。

  2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

  教学难点:

  理解分解图形时简单图形的差。

  教具学具:

  多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

  教学方法:

  先学后教,当堂训练

  教学过程:

  教师指导与教学过程学生学习活动过程设计意图

  一、在拼图活动中认识组合图

  1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

  2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

  1、教师出示图形

  学生拿出课前准备的图形,进行拼图操作活动。

  学生拼出各种各样的图形,选出贴在黑板上。

  指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……

  学生观察老师出示的图形,这幅图形象一张客厅的平面图。

  学生讨论怎样算买多少平方米的地板?

  通过这一操作活动,使学生从中体会到组合图形的组成特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形

  请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

  2、提出问题

  你们知道应该买多少平方米的地板吗?

  只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

  3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

  学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

  学生介绍自己探索中采用的分割方法。

  学生分别按照黑板上的`方法计算主客厅的地板的面积。

  学生发独立观察图并且解决问题,然后,集体汇报、订正。

  面积的基本方法。从中体会到组合图形的特点。

  让学生认识组合图形的形成以及特点。

  让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

  从中体会到组合图形的特点。

  板书设计:

  五、图形的面积

  组合图形面积

  2.成长的脚印

《组合图形的面积》教案13

  教学目标

  1.明白组合图形是由几个简单图形组合而成的,求组合图形的面积,就是求几个简单图形面积的和或差的计算。

  2.能正确的分解图形,一般分为三角形、长方形、正方形、平行四边形、梯形等,并能正确地求组合图形的面积。

  教学重点

  能根据条件求组合图形的面积。

  教学难点

  理解分解图形时简单图形的差较难分解。

  教具、学具

  教师指导与教学过程

  学生学习活动过程

  设计意图

  一、试一试

  教师引导学生读题,理解题意。

  二、练一练第1题

  1、请学生任意分割,后说说分割的是什么已经学过的图形

  2、老师要求再分割

  3、想一想出了分割还有没有其他方法。

  这个图形是在一个长方形的纸板上剪下四个小正方形,所以要用长方形的面积减四个小正方形的面积。

  学生自己进行分割,

  再分割为最少的学过的图形,比一比谁分的最少,而且还是我们学过的图形。

  适当地添上相关的条件进行分割,要求分割的合理,能够计算。

  培养学生的空间分析能力。

  通过三个层次的分割,使学生明白在组合图形的分割中,学要根据所给的条件进行合理的`分割和添补。

  教师指导与教学过程

  学生学习活动过程

  设计意图

  三、练一练第3题

  学生看书上的图。教师读题,

  要求学生想一想,并观察教室里的门,如果学生能发现要油漆门的两侧,教师要加以鼓励,还要注意些什么?

  四、作业

  完成练一练的第2题。

  理解题意后自己尝试计算,说说想法:要把门上的玻璃部分减掉,通过老师的提醒学生要明白要油漆门的两侧。

  除此以外还要注意第二问给出的平方米单位经过计算得到的单位是米,而图中给出的数据单位是分米,在计算面积时要把单位先统一。

  独立完成练习。

  学生能正确进行组合图形的实际运用。

  再进行组合图形的面积。

  书设计: 图形的面积

《组合图形的面积》教案14

  我说课的内容是《组合图形面积》。下面我和大家汇报一下我的设想,我从教材、教法学法、教学流程、板书设计、学习评价这几个方面来谈一谈。

  一、说教材

  1、教材分析

  《组合图形面积》是义务教育课程标准实验教科书北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。学情分析:

  根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探究、合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:

  2、教学目标

  (1)在自主探索的活动中,理解计算组合图形的多种方法。

  (2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。

  3、教学重、难点

  针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。教学难点则是:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  二、说教法、学法

  1、说教法(1)多媒体教学法

  在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是分割图形的几种方法通过课件的演示,学生一目了然,直观形象,印象深刻,从而使计算方法水到渠成,更好的突出了教学重点、突破了教学难点。

  (2)自主探究和合作交流教学法

  动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

  2、说学法

  (1)自主观察思考

  学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。(2)小组合作学习

  小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。(3)学习归纳

  改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。

  三、教学流程

  为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的.联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:

  (一)、创设情境、复习导入

  (二)、自主探索、合作交流

  (三)、综合实践、学以致用

  (四)、总结收获、小结全课

  (一)创设情境,复习导入 1、猜一猜:

  让学生猜测老师给大家带来的是哪些平面图形。根据已有的知识经验,学生会很快回答出来。(以前学过的正方形、长方形、平行四边形、三角形、梯形)2、说一说:

  说出上面各种图形的面积计算方法(并适时出示多媒体)

  3、拼一拼

  同桌合作利用事先准备好的七巧板,任用其中的若干个,拼成一个你们喜欢的图案,最先完成的还可以把你们的作品拿到前面来向同学们展示。(实物投影展示或是贴在黑板上)

  4、看一看

  请同学说说看你拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的(这一环节设计的目的是 让学生在猜一猜,说一说,拼一拼,看一看,的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关.由此揭示课题:组合图形面积(板书)

  (二)自主探究、合作交流

  1、学生独立与小组合作交流解决组合图形面积计算问题。

  由两幅新房图片提取出来的组合图形印成练习题单下发到各个小组,设计让学生合作交流解决 “小华家要买多少平方米的地板”这一生活问题.在这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验.)

  2、小组汇报学习情况

  汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:(1)将组合图形分割成两个长方形(2)将组合图形分割成两个梯形

  (3)将组合图形分割成两个长方形和一个正方形

  (4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。(学生边汇报,教师利用多媒体演示后随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。)

  3、师生总结分割法填补法。

  接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法.让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。)

  (三)综合实践、学以致用

  为了巩固新知,我设计了不同层次的练习,使不同层次的学生都有提高。前面情景导入时几个生活中的数学问题解决了一个,剩下的我放在练习里。(这一环节的教学,我注重对学生自信心的培养,让不同的学生都有不同层次的提高,让他们充分体验到成功的快乐,从而信心百倍,勇于向困难发出挑战。同时我还注重对学生学习兴趣的培养和思维能力的培养。)

  数学与人类的生活息息相关,它来源于生活,又应用于生活。因此在这一环节中我又设计了课内延伸环节.(四)总结收获、小结全课

  学习这节数学课,你有什么收获,或者有什么心得?

  (学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。)

  四、板书设计

  组合图形面积及计算

  1、组合图形

  2、分割法

  3、添补法

  (板书设计简洁,重点难点突出,一目了然。)

  五、学习评价

  把师评、互评、自评相结合。注重对学生动手能力、语言表达能力,学习热情的评价,充分发挥了评价的激励作用。

《组合图形的面积》教案15

  【教学内容】

  北师大教材五年级上册第一单元第一课时《组合图形面积》

  【学校及学生状况分析】

  我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。

  组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

  【教材分析】

  组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。

  【本课教学目标】

  1、知识与技能

  (1)、在自主探索的活动中,理解计算组合图形面积的多种方法。

  (2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)、能运用所学的知识,解决生活中组合图形的实际问题。

  2、过程与方法:

  让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

  3、情感态度与价值观:

  (1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

  (2)、渗透转化的数学思想和方法。

  【教学重难点及关键:】

  1、重点:掌握组合图形面积的计算方法。

  2、难点:理解计算组合图形面积的多种方法。

  3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

  【课前准备:】

  基本图形卡片、七巧板以及多媒体课件

  【教学课时】 一课时

  【教学设计】

  (一)观察动画,复习旧知,引出新知

  1、观察动画,分析引入

  (媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

  师:观察这幅图画,你发现了什么?

  生:很多的基本图形,组成了很多的图形) [板书:基本图形]

  师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

  2、复习基本图形面积公式

  师:还记得我们都学过哪些基本图形吗?

  (随着学生回答,按学习的顺序贴各个基本图形)

  问:那谁还记得这些基本图形的面积公式?

  (随着学生回答,在各个基本图形后面写公式)

  师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )

  (设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)

  (二)动手拼图,初探方法

  1、自拼图形,分析要素

  师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

  请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

  边做边思考:

  师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

  师:现在,就请你挑出你喜欢的`基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

  (学生活动,教师巡视,指导画高。)

  2、展示图形,分析条件

  (学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

  师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

  (强调公共边:既做长方形的长,又作三角形的底。)

  3、打开思路,探索面积

  师:怎样求一个组合图形的面积?

  生:分另计算三角形与长方形的面积,然后相加。

【《组合图形的面积》教案】相关文章:

六年级数学教案:《平面组合图形的面积》复习课06-01

面积与面积单位教案05-31

面积的教案11-19

《面积》教案04-24

有趣的图形教案06-06

图形与联想教案04-27

圆的面积教案06-26

梯形的面积教案04-12

《面积计算》教案06-13

精选面积和面积单位教案3篇08-16