高一数学教案(15篇)
作为一名教师,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。快来参考教案是怎么写的吧!下面是小编整理的高一数学教案,仅供参考,欢迎大家阅读。
高一数学教案1
教学目标
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的`夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学重难点
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
教学过程
一、知识归纳
1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路
(1)分析,(2)建模,(3)求解,(4)检验;
2、实际问题中的有关术语、名称:
(1)仰角与俯角:均是指视线与水平线所成的角;
(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;
(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;
3、用正弦余弦定理解实际问题的常见题型有:
测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;
二、例题讨论
一)利用方向角构造三角形
四)测量角度问题
例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
高一数学教案2
教学目标
1.理解等比数列的概念,掌握等比数列的通项公式,并能运用公式解决简单的问题.
(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能根据定义判断一个数列是等比数列,了解等比中项的概念;
(2)正确认识使用等比数列的表示法,能灵活运用通项公式求等比数列的首项、公比、项数及指定的项;
(3)通过通项公式认识等比数列的性质,能解决某些实际问题.
2.通过对等比数列的研究,逐步培养学生观察、类比、归纳、猜想等思维品质.
3.通过对等比数列概念的归纳,进一步培养学生严密的思维习惯,以及实事求是的科学态度.
教学建议
教材分析
(1)知识结构
等比数列是另一个简单常见的数列,研究内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而研究图像,又给出等比中项的概念,最后是通项公式的应用.
(2)重点、难点分析
教学重点是等比数列的定义和对通项公式的认识与应用,教学难点在于等比数列通项公式的推导和运用.
①与等差数列一样,等比数列也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出等比数列的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、等比数列的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学建议
(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.
(2)等比数列概念的引入,可给出几个具体的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.
(3)根据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.
(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点认识通项公式,由通项公式的结构特征画数列的图象.
(5)由于有了等差数列的研究经验,等比数列的研究完全可以放手让学生自己解决,教师只需把握课堂的节奏,作为一节课的组织者出现.
(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.
教学设计示例
课题:等比数列的概念
教学目标
1.通过教学使学生理解等比数列的概念,推导并掌握通项公式.
2.使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力.
3.培养学生勤于思考,实事求是的精神,及严谨的科学态度.
教学重点,难点
重点、难点是等比数列的定义的归纳及通项公式的推导.
教学用具
投影仪,多媒体软件,电脑.
教学方法
讨论、谈话法.
教学过程
一、提出问题
给出以下几组数列,将它们分类,说出分类标准.(幻灯片)
①-2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1, , ,…
⑤31,29,27,25,23,21,19,…
⑥1,-1,1,-1,1,-1,1,-1,…
⑦1,-10,100,-1000,10000,-100000,…
⑧0,0,0,0,0,0,0,…
由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的.一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列).
二、讲解新课
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数 这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)
等比数列(板书)
1.等比数列的定义(板书)
根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义.学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的.教师写出等比数列的定义,标注出重点词语.
请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当 时,数列 既是等差又是等比数列,当 时,它只是等差数列,而不是等比数列.教师追问理由,引出对等比数列的认识:
2.对定义的认识(板书)
(1)等比数列的首项不为0;
(2)等比数列的每一项都不为0,即 ;
问题:一个数列各项均不为0是这个数列为等比数列的什么条件?
(3)公比不为0.
用数学式子表示等比数列的定义.
是等比数列 ①.在这个式子的写法上可能会有一些争议,如写成 ,可让学生研究行不行,好不好;接下来再问,能否改写为 是等比数列 ?为什么不能?
式子 给出了数列第 项与第 项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式.
3.等比数列的通项公式(板书)
问题:用 和 表示第 项 .
①不完全归纳法
②叠乘法
,… , ,这 个式子相乘得 ,所以 .
(板书)(1)等比数列的通项公式
得出通项公式后,让学生思考如何认识通项公式.
(板书)(2)对公式的认识
由学生来说,最后归结:
①函数观点;
②方程思想(因在等差数列中已有认识,此处再复习巩固而已).
这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要注意规范表述的训练)
如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究.同学可以试着编几道题.
三、小结
1.本节课研究了等比数列的概念,得到了通项公式;
2.注意在研究内容与方法上要与等差数列相类比;
3.用方程的思想认识通项公式,并加以应用.
高一数学教案3
一、教材分析
本节课选自《普通高中课程标准数学教科书—必修1》(人教A版)《1。2。1函数的概念》共3课时,本节课是第1课时。生活中的许多现象如物体运动,气温升降,投资理财等都可以用函数的模型来刻画,是我们更好地了解自己、认识世界和预测未来的重要工具。函数是数学的重要的基础概念之一,是高等数学重多学科的基础概念和重要的研究对象。同时函数也是物理学等其他学科的重要基础知识和研究工具,教学内容中蕴涵着极其丰富的辩证思想。
二、学生学习情况分析
函数是中学数学的主体内容,学生在中学阶段对函数的认识分三个阶段:
(一)初中从运动变化的角度来刻画函数,初步认识正比例、反比例、一次和二次函数;
(二)高中用集合与对应的观点来刻画函数,研究函数的性质,学习典型的对、指、幂和三解函数;
(三)高中用导数工具研究函数的单调性和最值。
1、有利条件
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构的基础上的,因此教师在设计教学的过程中必须注意在学生已有知识结构中寻找新概念的固着点,引导学生通过同化或顺应,掌握新概念,进而完善知识结构。
初中用运动变化的观点对函数进行定义的,它反映了历人们对它的一种认识,而且这个定义较为直观,易于接受,因此按照由浅入深、力求符合学生认知规律的内容编排原则,函数概念在初中介绍到这个程度是合适的。也为我们用集合与对应的观点研究函数打下了一定的基础。
2、不利条件
用集合与对应的观点来定义函数,形式和内容上都是比较抽象的,这对学生的.理解能力是一个挑战,是本节课教学的一个不利条件。
三、教学目标分析
课标要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域。
1、知识与能力目标:
⑴能从集合与对应的角度理解函数的概念,更要理解函数的本质属性;
⑵理解函数的三要素的含义及其相互关系;
⑶会求简单函数的定义域和值域
2、过程与方法目标:
⑴通过丰富实例,使学生建立起函数概念的背景,体会函数是描述变量之间依赖关系的数学模型;
⑵在函数实例中,通过对关键词的强调和引导使学发现它们的共同特征,在此基础上再用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。
3、情感、态度与价值观目标:
感受生活中的数学,感悟事物之间联系与变化的辩证唯物主义观点。
四、教学重点、难点分析
1、教学重点:对函数概念的理解,用集合与对应的语言来刻画函数;
重点依据:初中是从变量的角度来定义函数,高中是用集合与对应的语言来刻画函数。二者反映的本质是一致的,即“函数是一种对应关系”。但是,初中定义并未完全揭示出函数概念的本质,对y?1这样的函数用运动变化的观点也很难解释。在以函数为重要内容的高中阶段,课本应将函数定义为两个数集之间的一种对应关系,按照这种观点,使我们对函数概念有了更深一层的认识,也很容易说明y?1这函数表达式。因此,分析两种函数概念的关系,让学生融会贯通地理解函数的概念应为本节课的重点。
突出重点:重点的突出依赖于对函数概念本质属性的把握,使学生通过表面的语言描述抓住概念的精髓。
2、教学难点:
第一:从实际问题中提炼出抽象的概念;
第二:符号“y=f(x)”的含义的理解。
难点依据:数学语言的抽象概括难度较大,对符号y=f(x)的理解会受到以前知识的负迁移。
突破难点:难点的突破要依托丰富的实例,从集合与对应的角度恰当地引导,而对抽象符号的理解则要结合函数的三要素和小例子进行说明。
五、教法与学法分析
1、教法分析
本节课我主要采用教师导学法、知识迁移法和知识对比法,从学生熟悉的丰富实例出发,关注学生的原有的知识基础,注重概念的形成过程,从初中的函数概念自然过度到函数的近代定我。
2、学法分析
在教学过程中我注意在教学中引导学生用模型法分析函数问题、通过自主学习法总结“区间”的知识。
高一数学教案4
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的.解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递
增,所以loga5.1
板书:
解:Ⅰ)当0
∵5.1<5.9 loga5.1="">loga5.9
Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函
数 的单调性比大小,②借用“中间量”间接比大小,③利用对数
函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
高一数学教案5
经典例题
已知关于 的方程 的实数解在区间 ,求 的取值范围。
反思提炼:1.常见的四种指数方程的一般解法
(1)方程 的解法:
(2)方程 的解法:
(3)方程 的解法:
(4)方程 的解法:
2.常见的三种对数方程的一般解法
(1)方程 的解法:
(2)方程 的解法:
(3)方程 的解法:
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
课后作业:
1.对正整数n,设曲线 在x=2处的切线与轴交点的纵坐标为 ,则数列 的前n项和的.公式是
[答案] 2n+1-2
[解析] ∵=xn(1-x),∴′=(xn)′(1-x)+(1-x)′xn=nxn-1(1-x)-xn.
f ′(2)=-n2n-1-2n=(-n-2)2n-1.
在点x=2处点的纵坐标为=-2n.
∴切线方程为+2n=(-n-2)2n-1(x-2).
令x=0得,=(n+1)2n,
∴an=(n+1)2n,
∴数列ann+1的前n项和为2(2n-1)2-1=2n+1-2.
2.在平面直角坐标系 中,已知点P是函数 的图象上的动点,该图象在P处的切线 交轴于点M,过点P作 的垂线交轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_____________
解析:设 则 ,过点P作 的垂线
,所以,t在 上单调增,在 单调减, 。
高一数学教案6
一、学习目标:
知识与技能:理解直线与平面、平面与平面平行的性质定理的含义, 并会应用性质解决问题
过程与方法:能应用文字语言、符号语言、图形语言准确地描述直线与平面、平面与平面的性质定理
情感态度与价值观:通过自主学习、主动参与、积极探究的学习过程,激发学生学习数学的自信心和积极性,培养学生良好的思维习惯,渗透化归与转化的数学思想,体会事物之间相互转化和理论联系实际的辩证唯物主义思想方法
二、学习重、难点
学习重点: 直线与平面、平面与平面平行的性质及其应用
学习难点: 将空间问题转化为平面问题的方法,
三、学法指导及要求:
1、限定45分钟完成,注意逐字逐句仔细审题,认真思考、独立规范作答,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班完成A.B类题
四、知识链接:
1.空间直线与直线的位置关系
2.直线与平面的位置关系
3.平面与平面的`位置关系
4.直线与平面平行的判定定理的符号表示
5.平面与平面平行的判定定理的符号表示
五、学习过程:
A问题1:
1)如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?
(观察长方体)
2)如果一条直线和一个平面平行,如何在这个平面内做一条直线与已知直线平行?
(可观察教室内灯管和地面)
A问题2: 一条直线与平面平行,这条直线和这个平面内直线的位置关系有几种可能?
A问题3:如果一条直线 与平面平行,在什么条件下直线 与平面内的直线平行呢?
由于直线 与平面内的任何直线无公共点,所以过直线 的某一平面,若与平面相交,则直线 就平行于这条交线
B自主探究1:已知: ∥, ,=b。求证: ∥b。
直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行
符号语言:
线面平行性质定理作用:证明两直线平行
思想:线面平行 线线平行
例1:有一块木料如图,已知棱BC平行于面AC(1)要经过木料表面ABCD 内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线和面AC有什么关系?
例2:已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面。
问题5:两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?两个平面平行,那么其中一个平面内的直线与另一平面内的直线有何关系?
自主探究2:如图,平面,,满足∥,=a,=b,求证:a∥b
平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行
符号语言:
面面平行性质定理作用:证明两直线平行
思想:面面平行 线线平行
例3 求证:夹在两个平行平面间的平行线段相等
六、达标检测:
A1.61页练习
A2.下列判断正确的是( )
A. ∥, ,则 ∥b B. =P,b ,则 与b不平行
C. ,则a∥ D. ∥,b∥,则 ∥b
B3.直线 ∥平面,P,过点P平行于 的直线( )
A.只有一条,不在平面内 B.有无数条,不一定在内
C.只有一条,且在平面内 D.有无数条,一定在内
B4.下列命题错误的是 ( )
A. 平行于同一条直线的两个平面平行或相交
B. 平行于同一个平面的两个平面平行
C. 平行于同一条直线的两条直线平行
D. 平行于同一个平面的两条直线平行或相交
B5. 平行四边形EFGH的四个顶点E、F、G、H、分别在空间四边形ABCD的四条边AB、BC、CD、AD、上,又EF∥BD,则 ( )
A. EH∥BD,BD不平行与FG
B. FG∥BD,EH不平行于BD
C. EH∥BD,FG∥BD
D. 以上都不对
B6.若直线 ∥b, ∥平面,则直线b与平面的位置关系是
B7一个平面上有两点到另一个平面的距离相等,则这两个平面
七、小结与反思:
高一数学教案7
一、教学目标
1、知识与技能
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪 四、教学思路
(一)创设情景,揭示课题
1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。
2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知
1、引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2、观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?
3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;
(2)其余各面都是平行四边形;
(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。
4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?
请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
6、以类似的'方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。
8、引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?
(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、课本P8,习题1.1 A组第1题。
4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?
四、巩固深化
练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理
由学生整理学习了哪些内容 六、布置作业
课本P8 练习题1.1 B组第1题
课外练习 课本P8 习题1.1 B组第2题
高一数学教案8
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的`关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
高一数学教案9
一、指导思想:
(1)随着素质教育的深入展开,《课程方案》提出了教育要面向世界,面向未来,面向现代化和教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等方面全面发展的社会主义事业的建设者和接班人的指导思想和课程理念和改革要点。使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能。
(2)培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
(3) 根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
(4) 使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
(5)学会通过收集信息、处理数据、制作图像、分析原因、推出结论来解决实际问题的思维方法和操作方法。
(6)本学期是高一的重要时期,教师承担着双重责任,既要不断夯实基础,加强综合能力的培养,又要渗透有关高考的思想方法,为三年的学习做好准备。
二、学生状况分析
本学期担任高一(1)班和(5)班的数学教学工作,学生共有111人,其中(1)班学生是名校直通班,学生思维活跃,(5)班是火箭班,学生基本素质不错,一些基本知识掌握不是很好,学习积极性需要教师提高,成绩以中等为主,中上不多。两个班中,从军训一周来看,学生的学习积极性还是比较高,爱问问题的同学比较多,但由于基础知识不太牢固,上课效率不是很高。
教材简析
使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。必修1有三章(集合与函数概念;基本初等函数;函数的应用);必修4有三章(三角函数;平面向量;三角恒等变换)。
必修1,主要涉及两章内容:
第一章 集合
通过本章学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;新-课-标-第-一-网
2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;
3.理解补集的含义,会求在给定集合中某个集合的补集;
4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;
5.渗透数形结合、分类讨论等数学思想方法;
6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章 函数的概念与基本初等函数Ⅰ
教学本章时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。通过本章学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;X|k |b| 1 . c|o |m
2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;
3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;
4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
必修4,主要涉及三章内容:
第一章 三角函数
通过本章学习,有助于学生认识三角函数与实际生活的紧密联系,以及三角函数在解决实际问题中的广泛应用,从中感受数学的价值,学会用数学的思维方式观察、分析现实世界、解决日常生活和其他学科学习中的问题,发展数学应用意识。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函数的定义,理解同角三角函数的基本关系及诱导公式;
3.了解三角函数的周期性;
4.掌握三角函数的图像与性质。
第二章 平面向量
在本章中让学生了解平面向量丰富的实际背景,理解平面向量及其运算的意义,能用向量的.语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、减法和向量数乘的运算;
3.理解平面向量的正交分解及其坐标表示,掌握平面向量的坐标运算;
4.理解平面向量数量积的含义,会用平面向量的数量积解决有关角度和垂直的问题。
第三章 三角恒等变换
通过推导两角和与差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及积化和差、和差化积、半角公式的过程,让学生在经历和参与数学发现活动的基础上,体会向量与三角函数的联系、向量与三角恒等变换公式的联系,理解并掌握三角变换的基本方法。
1.掌握两角和与差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正确运用三角公式进行简单的三角函数式的化简、求值和恒等式证明。
三、教学任务
本期授课内容为必修1和必修4,必修1在期中考试前完成(约在11月5日前完成);必修4在期末考试前完成(约在12月31日前完成)。
四、教学质量目标新 课 标
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,体会数学思想和方法。
2.提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高学生提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
五、促进目标达成的重点工作及措施
重点工作:
认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。
分层推进措施
1、重视学生非智力因素培养,要经常性地鼓励学生,增强学生学习数学兴趣,树立勇于克服困难与战胜困难的信心。
2、合理引入课题,由数学活动、故事、提问、师生交流等方式激发学生学习兴趣,注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、培养能力是数学教学的落脚点。能力是在获得和运用知识的过程中逐步培养起来的。在衔接教学中,首先要加强基本概念和基本规律的教学。
加强培养学生的逻辑思维能力和解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、讲清讲透数学概念和规律,使学生掌握完整的基础知识,培养学生数学思维能力 ,抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节(引入、探究、例析、反馈),针对不同的教材内容选择不同教法,提倡创新教学方法,把学生被动接受知识转化主动学习知识。
6、重视数学应用意识及应用能力的培养。
7、加强学生良好学习习惯的培养
六、教学时间大致安排
集合与函数概念 13 课时
基本初等函数 15
课时
函数的应用 8
课时
三角函数 24
课时
平面向量 14
课时
三角恒等变换 9
课时
高一数学教案10
学习目标
1.能根据抛物线的定义建立抛物线的标准方程;
2.会根据抛物线的标准方程写出其焦点坐标与准线方程;
3.会求抛物线的标准方程。
一、预习检查
1.完成下表:
标准方程
图形
焦点坐标
准线方程
开口方向
2.求抛物线的焦点坐标和准线方程.
3.求经过点的抛物线的标准方程.
二、问题探究
探究1:回顾抛物线的定义,依据定义,如何建立抛物线的标准方程?
探究2:方程是抛物线的标准方程吗?试将其与抛物线的标准方程辨析比较.
例1.已知抛物线的顶点在原点,对称轴为坐标轴,焦点在直线上,求抛物线的方程.
例2.已知抛物线的焦点在轴上,点是抛物线上的一点,到焦点的距离是5,求的值及抛物线的标准方程,准线方程.
例3.抛物线的顶点在原点,对称轴为轴,它与圆相交,公共弦的长为.求该抛物线的方程,并写出其焦点坐标与准线方程.
三、思维训练
1.在平面直角坐标系中,若抛物线上的点到该抛物线的焦点的距离为6,则点的横坐标为.
2.抛物线的焦点到其准线的距离是.
3.设为抛物线的焦点,为该抛物线上三点,若,则=.
4.若抛物线上两点到焦点的距离和为5,则线段的中点到轴的距离是.
5.(理)已知抛物线,有一个内接直角三角形,直角顶点在原点,斜边长为,一直角边所在直线方程是,求此抛物线的方程。
四、课后巩固
1.抛物线的准线方程是.
2.抛物线上一点到焦点的`距离为,则点到轴的距离为.
3.已知抛物线,焦点到准线的距离为,则.
4.经过点的抛物线的标准方程为.
5.顶点在原点,以双曲线的焦点为焦点的抛物线方程是.
6.抛物线的顶点在原点,以轴为对称轴,过焦点且倾斜角为的直线被抛物线所截得的弦长为8,求抛物线的方程.
7.若抛物线上有一点,其横坐标为,它到焦点的距离为10,求抛物线方程和点的坐标。
高一数学教案11
[三维目标]
一、知识与技能:
1、巩固集合、子、交、并、补的概念、性质和记号及它们之间的关系
2、了解集合的运算包含了集合表示法之间的转化及数学解题的一般思想
3、了解集合元素个数问题的讨论说明
二、过程与方法
通过提问汇总练习提炼的形式来发掘学生学习方法
三、情感态度与价值观
培养学生系统化及创造性的.思维
[教学重点、难点]:会正确应用其概念和性质做题 [教 具]:多媒体、实物投影仪
[教学方法]:讲练结合法
[授课类型]:复习课
[课时安排]:1课时
[教学过程]:集合部分汇总
本单元主要介绍了以下三个问题:
1,集合的含义与特征
2,集合的表示与转化
3,集合的基本运算
一,集合的含义与表示(含分类)
1,具有共同特征的对象的全体,称一个集合
2,集合按元素的个数分为:有限集和无穷集两类
高一数学教案12
一:【课前预习】
(一):【知识梳理】
1.直角三角形的边角关系(如图)
(1)边的关系(勾股定理):AC2+BC2=AB2;
(2)角的关系:B=
(3)边角关系:
①:
②:锐角三角函数:
A的正弦= ;
A的余弦= ,
A的正切=
注:三角函数值是一个比值.
2.特殊角的三角函数值.
3.三角函数的关系
(1) 互为余角的三角函数关系.
sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA
(2) 同角的.三角函数关系.
平方关系:sin2 A+cos2A=l
4.三角函数的大小比较
①正弦、正切是增函数.三角函数值随角的增大而增大,随角的减小而减小.
②余弦是减函数.三角函数值随角的增大而减小,随角的减小而增大。
(二):【课前练习】
1.等腰直角三角形一个锐角的余弦为( )
A. D.l
2.点M(tan60,-cos60)关于x轴的对称点M的坐标是( )
3.在 △ABC中,已知C=90,sinB=0.6,则cosA的值是( )
4.已知A为锐角,且cosA0.5,那么( )
A.060 B.6090 C.030 D.3090
二:【经典考题剖析】
1.如图,在Rt△ABC中,C=90,A=45,点D在AC上,BDC=60,AD=l,求BD、DC的长.
2.先化简,再求其值, 其中x=tan45-cos30
3. 计算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○
4.比较大小(在空格处填写或或=)
若=45○,则sin________cos
若45○,则sin cos
若45,则 sin cos.
5.⑴如图①、②锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律;
⑵根据你探索到的规律,试比较18○、34○、50○、61○、88○这些锐角的正弦值的大小和余弦值的大小.
三:【课后训练】
1. 2sin60-cos30tan45的结果为( )
A. D.0
2.在△ABC中,A为锐角,已知 cos(90-A)= ,sin(90-B)= ,则△ABC一定是( )
A.锐角三角形;B.直角三角形;C.钝角三角形;D.等腰三角形
3.如图,在平面直角坐标系中,已知A(3,0)点B(0,-4),则cosOAB等于__________
4.cos2+sin242○ =1,则锐角=______.
5.在下列不等式中,错误的是( )
A.sin45○sin30○;B.cos60○tan30○;D.cot30○
6.如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()
7.如图所示,在菱形ABCD中,AEBC于 E点,EC=1,B=30,求菱形ABCD的周长.
8.如图所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的值;②tanBCD的值
9.如图 ,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A/B之间的距离,他从湖边的C处测得A在北偏西45方向上,测得B在北偏东32方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A山之间的距离是多少?(结果精确至1米.参考数据:sin32○0.5299,cos32○0.8480)
10.某住宅小区修了一个塔形建筑物AB,如图所示,在与建筑物底部同一水平线的C处,测得点A的仰角为45,然后向塔方向前进8米到达D处,在D处测得点A的仰角为60,求建筑物的高度.(精确0.1米)
高一数学教案13
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的'分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
高一数学教案14
教学目标:
(1)了解集合的表示方法;
(2)能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:掌握集合的表示方法;
教学难点:选择恰当的表示方法;
教学过程:
一、复习回顾:
1.集合和元素的定义;元素的三个特性;元素与集合的关系;常用的数集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系
二、新课教学
(一).集合的表示方法
我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1) 列举法:把集合中的元素一一列举出来,并用花括号“ ”括起来表示集合的方法叫列举法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考
虑元素的顺序。
2.各个元素之间要用逗号隔开;
3.元素不能重复;
4.集合中的元素可以数,点,代数式等;
5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为
例1.(课本例1)用列举法表示下列集合:
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1到20以内的所有质数组成的集合;
(4)方程组 的解组成的集合。
思考2:(课本P4的'思考题)得出描述法的定义:
(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{ }内。
具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
说明:
1.课本P5最后一段话;
2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x|整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
例2.(课本例2)试分别用列举法和描述法表示下列集合:
(1)方程x2—2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合;
(3)方程组 的解。
思考3:(课本P6思考)
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(二).课堂练习:
1.课本P6练习2;
2.用适当的方法表示集合:大于0的所有奇数
3.集合A={x| ∈Z,x∈N},则它的元素是 。
4.已知集合A={x|-3
归纳小结:
本节课从实例入手,介绍了集合的常用表示方法,包括列举法、描述法。
作业布置:
1. 习题1.1,第3.4题;
2. 课后预习集合间的基本关系.
高一数学教案15
1、知识与技能
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
2、过程与方法
初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.
3、情态与价值
任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合”的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的.实数也有不同,这些都会影响学生对三角函数概念的理解.
本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地表明了正弦、余弦函数中从自变量到函数值之间的对应关系,也表明了这两个函数之间的关系.
教学重难点
重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
【高一数学教案】相关文章:
高一数学教案04-25
人教版高一数学教案12-15
高一数学教案优秀10-21
高一数学教案(经典15篇)05-23
高一数学教案15篇12-19
趣味的数学教案07-03
小学数学教案04-22
【经典】小学数学教案05-17
初中数学教案05-20