初中数学知识点总结

时间:2025-05-15 10:17:43 知识点总结 我要投稿

初中数学知识点总结大全【15篇】

  总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它能使我们及时找出错误并改正,我想我们需要写一份总结了吧。总结怎么写才能发挥它的作用呢?以下是小编帮大家整理的初中数学知识点总结,欢迎大家分享。

初中数学知识点总结大全【15篇】

初中数学知识点总结1

  三角形两边:

  定理三角形两边的和大于第三边。

  推论三角形两边的差小于第三边。

  三角形中位线定理:

  三角形的中位线平行于第三边,并且等于它的一半。

  三角形的重心:

  三角形的重心到顶点的距离是它到对边中点距离的2倍。

  在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线,三角形的三条中线交于一点,这一点叫做“三角形的重心”。

  与三角形有关的`角:

  1、三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

  2、直角三角形两个锐角的关系:直角三角形的两个锐角互余(相加为90°)。有两个角互余的三角形是直角三角形。

  3、三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角之和;三角形的一个外角大于与它不相邻的任何一个内角;三角形三个外角和为360°。

  全等三角形的性质和判定:

  全等三角形共有5种判定方式:SSS、SAS、ASA、AAS、HL。特殊情况下平移、旋转、对折也会构成全等三角形。

  (边边边),即三边对应相等的两个三角形全等。

  (边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。

  (角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。

  (角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。

  (斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。

  等边三角形的判定:

  1、三边相等的三角形是等边三角形(定义)。

  2、三个内角都相等的三角形是等边三角形。

  3、有一个角是60度的等腰三角形是等边三角形。

  4、有两个角等于60度的三角形是等边三角形。

初中数学知识点总结2

  1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等

  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°

  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形

  43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形

  48定理四边形的内角和等于360°49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°

  52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等

  55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

  74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的'直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方

  99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形

  114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  116定理一条弧所对的圆周角等于它所对的圆心角的一半

  117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心

  126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角

  129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

  131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  134如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)

  136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  (n2)180139正n边形的每个内角都等于

  n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  pnrn141正n边形的面积Sn=p表示正n边形的周长

  2142正三角形面积

  32aa表示边长4143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,

  k(n2)180360化为(n-2)(k-2)=4因此

  n144弧长计算公式:L=

  nR180nR2LR145扇形面积公式:S扇形==

  3602146内公切线长=d-(R-r)外公切线长=d-(R+r)

  公式分类及公式表达式

  乘法与因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根与系数的关系:X1+X2=-b/aX1*X2=c/a注:韦达定理判别式

  b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac

初中数学知识点总结3

  1、圆是定点的距离等于定长的点的集合

  2、圆的内部可以看作是圆心的距离小于半径的点的集合

  3、圆的外部可以看作是圆心的距离大于半径的点的集合

  4、同圆或等圆的半径相等

  5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  6、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线

  8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  9、定理不在同一直线上的三点确定一个圆。

  10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  12、推论2:圆的两条平行弦所夹的弧相等

  13、圆是以圆心为对称中心的中心对称图形

  14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

  16、定理:一条弧所对的圆周角等于它所对的圆心角的一半

  17、推论:1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

  18、推论:2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

  19、推论:3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

  20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  21、①直线L和⊙O相交dr②直线L和⊙O相切d=r③直线L和⊙O相离dr

  22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1经过圆心且垂直于切线的直线必经过切点25、推论2经过切点且垂直于切线的直线必经过圆心

  26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角

  27、圆的外切四边形的两组对边的和相等

  28、弦切角定理:弦切角等于它所夹的弧对的圆周角

  29、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的.两条相交弦,被交点分成的两条线段长的积相等31、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

  32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

  33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

  34、如果两个圆相切,那么切点一定在连心线上

  35、①两圆外离dR+r②两圆外切d=R+r③两圆相交R—rdR+r(Rr)④两圆内切d=R—r(Rr)⑤两圆内含dR—r(Rr)

  36、定理:相交两圆的连心线垂直平分两圆的公共弦

  37、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  39、正n边形的每个内角都等于(n—2)×180°/n40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  41、正n边形的面积Sn=pnrn/2p表示正n边形的周长42、正三角形面积√3a/4a表示边长

  43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k(n—2)180°/n=360°化为(n—2)(k—2)=444、弧长计算公式:L=n兀R/180

  45、扇形面积公式:S扇形=n兀R^2/360=LR/246、内公切线长=d—(R—r)外公切线长=d—(R+r)

初中数学知识点总结4

  1、xxx:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做xxx。

  2、xxx的分类

  3、xxx的三边关系:xxx任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从xxx的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做xxx的高。

  5、中线:在xxx中,连接一个顶点和它的对边中点的线段叫做xxx的中线。

  6、角平分线:xxx的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、xxx的稳定性:xxx的形状是固定的',xxx的这个性质叫xxx的稳定性。

  9、xxx内角和定理:xxx三个内角的和等于180°

  推论1直角xxx的两个锐角互余

  推论2xxx的一个外角等于和它不相邻的两个内角和

  推论3xxx的一个外角大于任何一个和它不相邻的内角;xxx的内角和是外角和的一半

  10、xxx的外角:xxx的一条边与另一条边延长线的夹角,叫做xxx的外角。

  11、xxx外角的性质

  (1)顶点是xxx的一个顶点,一边是xxx的一边,另一边是xxx的一边的延长线;

  (2)xxx的一个外角等于与它不相邻的两个内角和;

  (3)xxx的一个外角大于与它不相邻的任一内角;

  (4)xxx的外角和是360°。

初中数学知识点总结5

  课题

  3.5正比例函数、反比例函数、一次函数和二次函数

  教学目标

  1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式

  教学重点

  掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质

  教学难点

  掌握正(反)比例函数、一次函数和二次函数的`概念及其图形和性质

  教学方法

  讲练结合法

  教学过程

  (I)知识要点(见下表:)

  第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax

  第三章第30页b24acb2注:二次函数yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)

  2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解

  例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A(1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)

  (3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。2,

  解:(1)设yax2bxc(a0),将A、B、C三点坐标分别代入,可得方程组为

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)设二次函数为ya(x1)25,将Q点坐标代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵抛物线对称轴为x2;

  ∴抛物线与x轴的两个交点A、B应关于x2对称;∴由题设条件可得两个交点坐标分别为A(2∴可设函数解析式为:ya(x2代入方程可得a1

  ∴所求二次函数为yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,将(1,7)

  5),例2:二次函数的图像过点(0,8),(1,(4,0)

  (1)求函数图像的顶点坐标、对称轴、最值及单调区间(2)当x取何值时,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函数f(x)x2x1,x[1,1]的最值及相应的x值

  113x1(x)2,知函数的图像开口向上,对称轴为x

  224111]上是增函数。∴依题设条件可得f(x)在[1,]上是减函数,在[,22131]时,函数取得最小值,且ymin∴当x[1,24131又∵11

初中数学知识点总结6

  关于初中数学几何知识点总结

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的`中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

  怎样快速提高数学成绩?

  一、查缺补漏,主攻薄弱

  请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

  别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

  因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

  二、反思错题

  不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

  三、克服无谓失分

  如何避免审题出错?

  原因:看太快。

  应对策略:

  1.默读法;2.重点字词圈点勾画法;3.审图法。

  如何降低计算失误?

  表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

  应对策略:

  1.不要为了赶时间而跳步计算;

  2.宁可笔算,少用口算,更不要再抱着计算器;

  3.对平时易算错的题型,可以验算一遍。

  四、关注几个重点问题

  1.新定义题型、非常规题型、存在性问题。

  2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

  提高数学成绩常用方法有哪些

  1、预习

  预期常常由于“没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

  2、学会听课

  听分析、听思路、听应用,关键内容一字不漏,注意记录。

  3、做好错题本

  每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

  4、用好课外书

  正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

  5、注重数学思维方法的培养

  要注意数学思想和方法的指导,站得高,才能看得远。

初中数学知识点总结7

  1、正数和负数的有关概念

  (1)正数:

  比0大的数叫做正数;

  负数:比0小的数叫做负数;

  0既不是正数,也不是负数。

  (2)正数和负数表示相反意义的量。

  2、有理数的概念及分类

  3、有关数轴

  (1)数轴的三要素:原点、正方向、单位长度。数轴是一条直线。

  (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

  (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

  (2)相反数:符号不同、绝对值相等的两个数互为相反数。

  若a、b互为相反数,则a+b=0;

  相反数是本身的是0,正数的相反数是负数,负数的相反数是正数。

  (3)绝对值最小的数是0;绝对值是本身的数是非负数。

  4、任何数的`绝对值是非负数。

  最小的正整数是1,最大的负整数是-1。

  5、利用绝对值比较大小

  两个正数比较:绝对值大的那个数大;

  两个负数比较:先算出它们的绝对值,绝对值大的反而小。

  6、有理数加法

  (1)符号相同的两数相加:和的符号与两个加数的符号一致,和的绝对值等于两个加数绝对值之和。

  (2)符号相反的两数相加:当两个加数绝对值不等时,和的符号与绝对值较大的加数的符号相同,和的绝对值等于加数中较大的绝对值减去较小的绝对值;当两个加数绝对值相等时,两个加数互为相反数,和为零。

  (3)一个数同零相加,仍得这个数。

  加法的交换律:a+b=b+a

  加法的结合律:(a+b)+c=a+(b+c)

  7、有理数减法:

  减去一个数,等于加上这个数的相反数。

  8、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写。

  例如:14+12+(-25)+(-17)可以写成省略括号的形式:14+12 -25-17,可以读作“正14加12减25减17”,也可以读作“正14、正12、负25、负17的和。”

  9、有理数的乘法

  两个数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘都得0。

  第一步:确定积的符号第二步:绝对值相乘

  10、乘积的符号的确定

  几个有理数相乘,因数都不为0时,积的符号由负因数的个数确定:当负因数有奇数个时,积为负;

  当负因数有偶数个时,积为正。几个有理数相乘,有一个因数为零,积就为零。

  11、倒数:

  乘积为1的两个数互为倒数,0没有倒数。

  正数的倒数是正数,负数的倒数是负数。(互为倒数的两个数符号一定相同)

  倒数是本身的只有1和-1。

  初中数学知识点总结2平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:

  ①在同一平面

  ②两条数轴

  ③互相垂直

  ④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向。

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成。

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成。

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

初中数学知识点总结8

  第一章图形的认识初步

  一、知识框架

  本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。在此基础上,认识一些简单的平面图形——直线、射线、线段和角。

  二、本章书涉及的数学思想:

  分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

  方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

  图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

  化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n—1)/2的具体运用上来。

  人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。

  第二章相交线与平行线

  一、知识框架

  二、知识概念

  邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

  对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

  垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的'垂线。

  平行线:在同一平面内,不相交的两条直线叫做平行线。

  同位角、内错角、同旁内角:

  同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

  内错角:∠2与∠6像这样的一对角叫做内错角。

  同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

  命题:判断一件事情的语句叫命题。

  平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

  对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

初中数学知识点总结9

  一、一次函数图象y=kx+b

  一次函数的图象可以由k、b的正负来决定:

  k大于零是一撇(由左下至右上,增函数)

  k小于零是一捺(由右上至左下,减函数)

  b等于零必过原点;

  b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

  b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

  其图象经过(0,b)和(—b/k,0)这两点(两点就可以决定一条直线),且(0,b)在y轴上,(—b/k,0)在x轴上。

  b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

  二、不等式组的解集

  1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。

  2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的`规律,写出不等式组的解集:不等式组解集的确定方法,若a

  A的解集是解集小小的取小

  B的解集是解集大大的取大

  C的解集是解集大小的小大的取中间

  D的解集是空集解集大大的小小的无解

  另需注意等于的问题。

  三、零的描述

  1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。

  A、零是表示具有相反意义的量的基准数。

  B、零是判定正、负数的界限。

  C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。

  2、零的运算性质

  A、乘方:零的正整数次幂都是零。

  B、除法:零除以任何不等于零的数都得零;零不能作除数;0没有倒数。

  C、乘法:零乘以任何数都得零。ab=0a、b中至少有一个是0。

  D、加法a、b互为相反数a+b=0

  E、减法(比较大小用)a—b=0a=b;a—b0ab;a—b0a

  3、在近似数中,当0作为有效数字时,它表示不同的精确度,不能省略。

  四、因式分解分解方法

  首先提取公因式,然后依次用公式,十字相乘,分组分解法,若都不行,再拆项添项试一试。必须进行到每一个多项式因式不能再分解为止

  1、提公因式法

  首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

  2、公式

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2,还立方差和及其他公式

  3、十字相乘

  运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解。

  将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

  ①列出常数项分解成两个因数的积各种可能情况;

  ②尝试其中的哪两个因数的和恰好等于一次项系数。

  4、分组分解法

  多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  再提公因式(m+n)

  a(m+n)+b(m+n)

  =(m+n)?(a+b)。

  可见如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

初中数学知识点总结10

  第一章图形的变换

  考点一、平移(3~5分)

  1、定义

  把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。

  2、性质

  (1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动

  (2)连接各组对应点的线段平行(或在同一直线上)且相等。

  考点二、轴对称(3~5分)

  1、定义

  把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。

  2、性质

  (1)关于某条直线对称的两个图形是全等形。

  (2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

  (3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  3、判定

  如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  4、轴对称图形

  把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

  考点三、旋转(3~8分)

  1、定义

  把一个图形绕某一点o转动一个角度的图形变换叫做旋转,其中o叫做旋转中心,转动的角叫做旋转角。

  2、性质

  (1)对应点到旋转中心的距离相等。

  (2)对应点与旋转中心所连线段的夹角等于旋转角。

  考点四、中心对称(3分)

  1、定义

  把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

  2、性质

  (1)关于中心对称的两个图形是全等形。

  (2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  (3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

  3、判定

  如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

  4、中心对称图形

  把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。

  考点五、坐标系中对称点的特征(3分)

  1、关于原点对称的点的特征

  两个点关于原点对称时,它们的坐标的符号相反,即点p(x,y)关于原点的对称点为p’(-x,-y)

  2、关于x轴对称的.点的特征

  两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点p(x,y)关于x轴的对称点为p’(x,-y)

  3、关于y轴对称的点的特征

  两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点p(x,y)关于y轴的对称点为p’(-x,y)

  第二章图形的相似

  考点一、比例线段(3分)

  1、比例线段的相关概念

  如果选用同一长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的比是,或写成a:b=m:n

  在两条线段的比a:b中,a叫做比的前项,b叫做比的后项。

  在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段

  若四条a,b,c,d满足或a:b=c:d,那么a,b,c,d叫做组成比例的项,线段a,d叫做比例外项,线段b,c叫做比例内项,线段的d叫做a,b,c的第四比例项。

  如果作为比例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的比例中项。

  2、比例的性质

  (1)基本性质

  ①a:b=c:dad=bc

  ②a:b=b:c

  (2)更比性质(交换比例的内项或外项)

  (交换内项)

  (交换外项)

  (同时交换内项和外项)

  (3)反比性质(交换比的前项、后项):

  (4)合比性质:

  (5)等比性质:

  3、黄金分割

  把线段ab分成两条线段ac,bc(ac>bc),并且使ac是ab和bc的比例中项,叫做把线段ab黄金分割,点c叫做线段ab的黄金分割点,其中ac=ab0.618ab

  考点二、平行线分线段成比例定理(3~5分)

  三条平行线截两条直线,所得的对应线段成比例。

  推论:

  (1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

  逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

  (2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。

  考点三、相似三角形(3~8分)

  1、相似三角形的概念

  对应角相等,对应边成比例的三角形叫做相似三角形。相似用符号“∽”来表示,读作“相似于”。相似三角形对应边的比叫做相似比(或相似系数)。

  2、相似三角形的基本定理

  平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

  用数学语言表述如下:

  ∵de∥bc,∴△ade∽△abc

  相似三角形的等价关系:

  (1)反身性:对于任一△abc,都有△abc∽△abc;

  (2)对称性:若△abc∽△a’b’c’,则△a’b’c’∽△abc

  (3)传递性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,则△abc∽△a’’b’’c’’。

  3、三角形相似的判定

  (1)三角形相似的判定方法

  ①定义法:对应角相等,对应边成比例的两个三角形相似

  ②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  ③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

  ④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

  ⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似

  (2)直角三角形相似的判定方法

  ①以上各种判定方法均适用

  ②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  ③垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

  4、相似三角形的性质

  (1)相似三角形的对应角相等,对应边成比例

  (2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比

  (3)相似三角形周长的比等于相似比

  (4)相似三角形面积的比等于相似比的平方。

  5、相似多边形

  (1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。相似多边形对应边的比叫做相似比(或相似系数)

  (2)相似多边形的性质

  ①相似多边形的对应角相等,对应边成比例

  ②相似多边形周长的比、对应对角线的比都等于相似比

  ③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比

  ④相似多边形面积的比等于相似比的平方

  6、位似图形

  如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。

  性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。

  由一个图形得到它的位似图形的变换叫做位似变换。利用位似变换可以把一个图形放大或缩小。

初中数学知识点总结11

  一、圆

  1、圆的有关性质

  在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。

  由圆的意义可知:

  圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

  就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。

  圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。

  圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。

  圆心相同,半径不相等的两个圆叫同心圆。

  能够重合的两个圆叫等圆。

  同圆或等圆的半径相等。

  在同圆或等圆中,能够互相重合的弧叫等弧。

  二、过三点的圆

  l、过三点的圆

  过三点的圆的作法:利用中垂线找圆心

  定理不在同一直线上的三个点确定一个圆。

  经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

  2、反证法

  反证法的三个步骤:

  ①假设命题的结论不成立;

  ②从这个假设出发,经过推理论证,得出矛盾;

  ③由矛盾得出假设不正确,从而肯定命题的结论正确。

  例如:求证三角形中最多只有一个角是钝角。

  证明:设有两个以上是钝角

  则两个钝角之和>180°

  与三角形内角和等于180°矛盾。

  ∴不可能有二个以上是钝角。

  即最多只能有一个是钝角。

  三、垂直于弦的直径

  圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

  垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

  推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

  弦的垂直平分线经过圆心,并且平分弦所对的两条弧。

  平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。

  推理2:圆两条平行弦所夹的弧相等。

  四、圆心角、弧、弦、弦心距之间的关系

  圆是以圆心为对称中心的中心对称图形。

  实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。

  顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。

  定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。

  推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。

  五、圆周角

  顶点在圆上,并且两边都和圆相交的角叫圆周角。

  推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

  由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的'辅助线。

  六、圆的判定性质

  1.不在同一直线上的三点确定一个圆。

  2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2 圆的两条平行弦所夹的弧相等

  3.圆是以圆心为对称中心的中心对称图形

  4.圆是定点的距离等于定长的点的集合

  5.圆的内部可以看作是圆心的距离小于半径的点的集合

  6.圆的外部可以看作是圆心的距离大于半径的点的集合

  7.同圆或等圆的半径相等

  8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

  10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

  12.①直线L和⊙O相交 d

  ②直线L和⊙O相切 d=r

  ③直线L和⊙O相离 dr

  13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

  14.切线的性质定理 圆的切线垂直于经过切点的半径

  15.推论1 经过圆心且垂直于切线的直线必经过切点

  16.推论2 经过切点且垂直于切线的直线必经过圆心

  17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

  18.圆的外切四边形的两组对边的和相等 外角等于内对角

  19.如果两个圆相切,那么切点一定在连心线上

  20.①两圆外离 dR+r ②两圆外切 d=R+r

  ③.两圆相交 R-rr)

  ④.两圆内切 d=R-r(Rr) ⑤两圆内含dr)

初中数学知识点总结12

  一、重要概念

  1.总体:考察对象的全体。

  2.个体:总体中每一个考察对象。

  3.样本:从总体中抽出的一部分个体。

  4.样本容量:样本中个体的数目。

  5.众数:一组数据中,出现次数最多的数据。

  6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)

  二、计算方法

  1.样本平均数:⑴;⑵若,…,,则(a—常数,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

  2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

  3.样本标准差:

  三、应用举例(略)

  初三数学知识点:第四章直线形

  ★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

  ☆内容提要☆

  一、直线、相交线、平行线

  1.线段、射线、直线三者的区别与联系

  从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

  2.线段的中点及表示

  3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

  4.两点间的.距离(三个距离:点-点;点-线;线-线)

  5.角(平角、周角、直角、锐角、钝角)

  6.互为余角、互为补角及表示方法

  7.角的平分线及其表示

  8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

  9.对顶角及性质

  10.平行线及判定与性质(互逆)(二者的区别与联系)

  11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

  12.定义、命题、命题的组成

  13.公理、定理

  14.逆命题

  二、三角形

  分类:⑴按边分;

  ⑵按角分

  1.定义(包括内、外角)

  2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中

  3.三角形的主要线段

  讨论:①定义②x线的交点—三角形的×心③性质

  ①高线②中线③角平分线④中垂线⑤中位线

  ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

  4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

  5.全等三角形

  ⑴一般三角形全等的判定(sas、asa、aas、sss)

  ⑵特殊三角形全等的判定:①一般方法②专用方法

  6.三角形的面积

  ⑴一般计算公式⑵性质:等底等高的三角形面积相等。

  7.重要辅助线

  ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

  8.证明方法

  ⑴直接证法:综合法、分析法

  ⑵间接证法—反证法:①反设②归谬③结论

  ⑶证线段相等、角相等常通过证三角形全等

  ⑷证线段倍分关系:加倍法、折半法

  ⑸证线段和差关系:延结法、截余法

  ⑹证面积关系:将面积表示出来

  三、四边形

  分类表:

  1.一般性质(角)

  ⑴内角和:360°

  ⑵顺次连结各边中点得平行四边形。

  推论1:顺次连结对角线相等的四边形各边中点得菱形。

  推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

  ⑶外角和:360°

  2.特殊四边形

  ⑴研究它们的一般方法:

  ⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

  ⑶判定步骤:四边形→平行四边形→矩形→正方形

  ┗→菱形——↑

  ⑷对角线的纽带作用:

  3.对称图形

  ⑴轴对称(定义及性质);⑵中心对称(定义及性质)

  4.有关定理:①平行线等分线段定理及其推论1、2

  ②三角形、梯形的中位线定理

  ③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

  5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

  6.作图:任意等分线段。

初中数学知识点总结13

  1、初中数学知识点口诀

  人说几何很困难,难点就在辅助线。

  辅助线,如何添?把握定理和概念。

  还要刻苦加钻研,找出规律凭经验。

  图中有角平分线,可向两边作垂线。

  角平分线平行线,等腰三角形来添。

  线段垂直平分线,常向两端把线连。

  要证线段倍与半,延长缩短可试验。

  三角形中两中点,连接则成中位线。

  三角形中有中线,延长中线加一倍。

  梯形里面作高线,平移一腰试试看。

  等积式子比例换,寻找相似很关键。

  直接证明有困难,等量代换少麻烦。

  斜边上面作高线,弦高公式是关键。

  半径与弦长计算,弦心距来中间站。

  圆上若有一切线,切点圆心半径连。

  要想证明是切线,半径垂线仔细辨。

  是直径,成半圆,想成直角径连弦。

  弧有中点圆心连,垂径定理要记全。

  圆周角边两条弦,直径和弦端点连。

  要想作个外接圆,各边作出中垂线。

  还要作个内切圆,内角平分线梦园。

  如果遇到相交圆,不要忘作公共弦。

  若是添上连心线,切点肯定在上面。

  辅助线,是虚线,画图注意勿改变。

  假如图形较分散,对称旋转去实验。

  基本作图很关键,平时掌握要熟练。

  解题还要多心眼,经常总结方法显。

  切勿盲目乱添线,方法灵活应多变。

  分析综合方法选,困难再多也会减。

  虚心勤学加苦练,成绩上升成直线。

  2、初中数学知识点口诀

  学习几何体会深,成败也许一线牵。

  分散条件要集中,常要添加辅助线。

  畏惧心理不要有,其次要把观念变。

  熟能生巧有规律,真知灼见靠实践。

  图中已知有中线,倍长中线把线连。

  旋转构造全等形,等线段角可代换。

  多条中线连中点,便可得到中位线。

  倘若知角平分线,既可两边作垂线。

  也可沿线去翻折,全等图形立呈现。

  角分线若加垂线,等腰三角形可见。

  角分线加平行线,等线段角位置变。

  已知线段中垂线,连接两端等线段。

  辅助线必画虚线,便与原图联系看。

  3、有理数的加法运算

  同号两数来相加,绝对值加不变号。

  异号相加大减小,大数决定和符号。

  互为相反数求和,结果是零须记好。

  【注】“大”减“小”是指绝对值的大小。

  4、有理数的减法运算

  减正等于加负,减负等于加正。

  有理数的乘法运算符号法则

  同号得正异号负,一项为零积是零。

  5、合并同类项

  说起合并同类项,法则千万不能忘。

  只求系数代数和,字母指数留原样。

  6、去、添括号法则

  去括号或添括号,关键要看连接号。

  扩号前面是正号,去添括号不变号。

  括号前面是负号,去添括号都变号。

  7、解方程

  已知未知闹分离,分离要靠移完成。

  移加变减减变加,移乘变除除变乘。

  8、平方差公式

  两数和乘两数差,等于两数平方差。

  积化和差变两项,完全平方不是它。

  9、完全平方公式

  二数和或差平方,展开式它共三项。

  首平方与末平方,首末二倍中间放。

  和的平方加联结,先减后加差平方。

  10、完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先减后加差平方。

  11、解一元一次方程

  先去分母再括号,移项变号要记牢。

  同类各项去合并,系数化“1”还没好。

  求得未知须检验,回代值等才上算。

  12、解一元一次方程

  先去分母再括号,移项合并同类项。

  系数化1还没好,准确无误不白忙。

  13、因式分解与乘法

  和差化积是乘法,乘法本身是运算。

  积化和差是分解,因式分解非运算。

  14、因式分解

  两式平方符号异,因式分解你别怕。

  两底和乘两底差,分解结果就是它。

  两式平方符号同,底积2倍坐中央。

  因式分解能与否,符号上面有文章。

  同和异差先平方,还要加上正负号。

  同正则正负就负,异则需添幂符号。

  15、因式分解

  一提二套三分组,十字相乘也上数。

  四种方法都不行,拆项添项去重组。

  重组无望试求根,换元或者算余数。

  多种方法灵活选,连乘结果是基础。

  同式相乘若出现,乘方表示要记住。

  【注】一提(提公因式)二套(套公式)

  16、因式分解

  一提二套三分组,叉乘求根也上数。

  五种方法都不行,拆项添项去重组。

  对症下药稳又准,连乘结果是基础。

  17、二次三项式的因式分解

  先想完全平方式,十字相乘是其次。

  两种方法行不通,求根分解去尝试。

  18、比和比例

  两数相除也叫比,两比相等叫比例。

  外项积等内项积,等积可化八比例。

  分别交换内外项,统统都要叫更比。

  同时交换内外项,便要称其为反比。

  前后项和比后项,比值不变叫合比。

  前后项差比后项,组成比例是分比。

  两项和比两项差,比值相等合分比。

  前项和比后项和,比值不变叫等比。

  19、解比例

  外项积等内项积,列出方程并解之。

  20、求比值

  由已知去求比值,多种途径可利用。

  活用比例七性质,变量替换也走红。

  消元也是好办法,殊途同归会变通。

  21、正比例与反比例

  商定变量成正比,积定变量成反比。

  22、正比例与反比例

  变化过程商一定,两个变量成正比。

  变化过程积一定,两个变量成反比。

  23、判断四数成比例

  四数是否成比例,递增递减先排序。

  两端积等中间积,四数一定成比例。

  24、判断四式成比例

  四式是否成比例,生或降幂先排序。

  两端积等中间积,四式便可成比例。

  25、比例中项

  成比例的四项中,外项相同会遇到。

  有时内项会相同,比例中项少不了。

  比例中项很重要,多种场合会碰到。

  成比例的四项中,外项相同有不少。

  有时内项会相同,比例中项出现了。

  同数平方等异积,比例中项无处逃。

  26、根式与无理式

  表示方根代数式,都可称其为根式。

  根式异于无理式,被开方式无限制。

  被开方式有字母,才能称为无理式。

  无理式都是根式,区分它们有标志。

  被开方式有字母,又可称为无理式。

  27、求定义域

  求定义域有讲究,四项原则须留意。

  负数不能开平方,分母为零无意义。

  指是分数底正数,数零没有零次幂。

  限制条件不唯一,满足多个不等式。

  求定义域要过关,四项原则须注意。

  负数不能开平方,分母为零无意义。

  分数指数底正数,数零没有零次幂。

  限制条件不唯一,不等式组求解集。

  28、解一元一次不等式

  先去分母再括号,移项合并同类项。

  系数化“1”有讲究,同乘除负要变向。

  先去分母再括号,移项别忘要变号。

  同类各项去合并,系数化“1”注意了。

  同乘除正无防碍,同乘除负也变号。

  29、解一元一次不等式组

  大于头来小于尾,大小不一中间找。

  大大小小没有解,四种情况全来了。

  同向取两边,异向取中间。

  中间无元素,无解便出现。

  幼儿园小鬼当家,(同小相对取较小)

  敬老院以老为荣,(同大就要取较大)

  军营里没老没少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  30、解一元二次不等式

  首先化成一般式,构造函数第二站。

  判别式值若非负,曲线横轴有交点。

  A正开口它向上,大于零则取两边。

  代数式若小于零,解集交点数之间。

  方程若无实数根,口上大零解为全。

  小于零将没有解,开口向下正相反。

  31、用平方差公式因式分解

  异号两个平方项,因式分解有办法。

  两底和乘两底差,分解结果就是它。

  32、用完全平方公式因式分解

  两平方项在两端,底积2倍在中部。

  同正两底和平方,全负和方相反数。

  分成两底差平方,方正倍积要为负。

  两边为负中间正,底差平方相反数。

  一平方又一平方,底积2倍在中路。

  三正两底和平方,全负和方相反数。

  分成两底差平方,两端为正倍积负。

  两边若负中间正,底差平方相反数。

  33、用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  调整系数随其后,使其成为最简比。

  确定参数abc,计算方程判别式。

  判别式值与零比,有无实根便得知。

  有实根可套公式,没有实根要告之。

  34、用常规配方法解一元二次方程

  左未右已先分离,二系化“1”是其次。

  一系折半再平方,两边同加没问题。

  左边分解右合并,直接开方去解题。

  该种解法叫配方,解方程时多练习。

  35、用间接配方法解一元二次方程

  已知未知先分离,因式分解是其次。

  调整系数等互反,和差积套恒等式。

  完全平方等常数,间接配方显优势。

  【注】恒等式

  36、解一元二次方程

  方程没有一次项,直接开方最理想。

  如果缺少常数项,因式分解没商量。

  b、c相等都为零,等根是零不要忘。

  b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。

  37、正比例函数的`鉴别

  判断正比例函数,检验当分两步走。

  一量表示另一量,是与否。

  若有还要看取值,全体实数都要有。

  正比例函数是否,辨别需分两步走。

  一量表示另一量,有没有。

  若有再去看取值,全体实数都需要。

  区分正比例函数,衡量可分两步走。

  一量表示另一量,是与否。

  若有还要看取值,全体实数都要有。

  38、正比例函数的图象与性质

  正比函数图直线,经过和原点。

  K正一三负二四,变化趋势记心间。

  K正左低右边高,同大同小向爬山。

  K负左高右边低,一大另小下山峦。

  39、一次函数

  一次函数图直线,经过点。

  K正左低右边高,越走越高向爬山。

  K负左高右边低,越来越低很明显。

  K称斜率b截距,截距为零变正函。

  40、反比例函数

  反比函数双曲线,经过点。

  K正一三负二四,两轴是它渐近线。

  K正左高右边低,一三象限滑下山。

  K负左低右边高,二四象限如爬山。

  41、二次函数

  二次方程零换y,二次函数便出现。

  全体实数定义域,图像叫做抛物线。

  抛物线有对称轴,两边单调正相反。

  A定开口及大小,线轴交点叫顶点。

  顶点非高即最低。上低下高很显眼。

  如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。

  列表描点后连线,平移规律记心间。

  左加右减括号内,号外上加下要减。

  二次方程零换y,就得到二次函数。

  图像叫做抛物线,定义域全体实数。

  A定开口及大小,开口向上是正数。

  绝对值大开口小,开口向下A负数。

  抛物线有对称轴,增减特性可看图。

  线轴交点叫顶点,顶点纵标最值出。

  如果要画抛物线,描点平移两条路。

  提取配方定顶点,平移描点皆成图。

  列表描点后连线,三点大致定全图。

  若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。

  【注】基础抛物线

  42、直线、射线与线段

  直线射线与线段,形状相似有关联。

  直线长短不确定,可向两方无限延。

  射线仅有一端点,反向延长成直线。

  线段定长两端点,双向延伸变直线。

  两点定线是共性,组成图形最常见。

  43、角

  一点出发两射线,组成图形叫做角。

  共线反向是平角,平角之半叫直角。

  平角两倍成周角,小于直角叫锐角。

  直平之间是钝角,平周之间叫优角。

  互余两角和直角,和是平角互补角。

  一点出发两射线,组成图形叫做角。

  平角反向且共线,平角之半叫直角。

  平角两倍成周角,小于直角叫锐角。

  钝角界于直平间,平周之间叫优角。

  和为直角叫互余,互为补角和平角。

  44、证等积或比例线段

  等积或比例线段,多种途径可以证。

  证等积要改等比,对照图形看特征。

  共点共线线相交,平行截比把题证。

  三点定型十分像,想法来把相似证。

  图形明显不相似,等线段比替换证。

  换后结论能成立,原来命题即得证。

  实在不行用面积,射影角分线也成。

  只要学习肯登攀,手脑并用无不胜。

  45、解无理方程

  一无一有各一边,两无也要放两边。

  乘方根号无踪迹,方程可解无负担。

  两无一有相对难,两次乘方也好办。

  特殊情况去换元,得解验根是必然。

  46、解分式方程

  先约后乘公分母,整式方程转化出。

  特殊情况可换元,去掉分母是出路。

  求得解后要验根,原留增舍别含糊。

  47、列方程解应用题

  列方程解应用题,审设列解双检答。

  审题弄清已未知,设元直间两办法。

  列表画图造方程,解方程时守章法。

  检验准且合题意,问求同一才作答。

  48、两点间距离公式

  同轴两点求距离,大减小数就为之。

  与轴等距两个点,间距求法亦如此。

  平面任意两个点,横纵标差先求值。

  差方相加开平方,距离公式要牢记。

  49、矩形的判定

  任意一个四边形,三个直角成矩形;

  对角线等互平分,四边形它是矩形。

  已知平行四边形,一个直角叫矩形;

  两对角线若相等,理所当然为矩形。

  50、菱形的判定

  任意一个四边形,四边相等成菱形;

  四边形的对角线,垂直互分是菱形。

  已知平行四边形,邻边相等叫菱形;

  两对角线若垂直,顺理成章为菱形。

初中数学知识点总结14

  1.圆是以圆心为对称中心的中心对称图形;同圆或等圆的半径相等。

  2.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。

  3.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

  4.圆是定点的距离等于定长的点的集合。

  5.圆的内部可以看作是圆心的距离小于半径的点的集合;圆的外部可以看作是圆心的距离大于半径的'点的集合。

  6.不在同一直线上的三点确定一个圆。

  7.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  推论1:

  ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  8.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  9.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

  10.经过切点且垂直于切线的直线必经过圆心。

  11.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。

  12.切线的性质定理圆的切线垂直于经过切点的半径。

  13.经过圆心且垂直于切线的直线必经过切点

  14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

  15.圆的外切四边形的两组对边的和相等外角等于内对角。

  16.如果两个圆相切,那么切点一定在连心线上。

  17.

  ①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交d>R-r)

  ④两圆内切d=R-r(R>r)

  ⑤两圆内含d=r)

  18.定理把圆分成n(n≥3):

  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形

  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形。

  19.定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  20.弧长计算公式:L=n兀R/180;扇形面积公式:S扇形=n兀R^2/360=LR/2。

  21.内公切线长= d-(R-r)外公切线长= d-(R+r)。

  22.定理一条弧所对的圆周角等于它所对的圆心角的一半。

  23.推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  24.推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

初中数学知识点总结15

  知识要点:数列中的项必须是数,它可以是实数,也可以是复数。

  数列表示方法

  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。如an=(-1)^(n+1)+1。

  数列通项公式的特点:(1)有些数列的通项公式可以有不同形式,即不唯一。(2)有些数列没有通项公式

  如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。如an=2a(n-1)+1 (n>;1)

  数列递推公式的特点:(1)有些数列的递推公式可以有不同形式,即不唯一。(2)有些数列没有递推公式

  有递推公式不一定有通项公式

  知识要领总结:数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的.掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

  通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【初中数学知识点总结】相关文章:

初中数学知识点总结12-21

初中数学函数知识点总结03-01

初中数学圆的知识点总结10-14

初中数学知识点总结10-31

初中数学知识点总结11-16

初中数学圆知识点总结08-12

初中数学圆知识点总结02-06

初中数学圆的知识点总结02-12

初中数学知识点总结03-15

人教版初中数学知识点总结09-26